ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general overview and the first results of the SUMO project (a SUrvey of Multiple pOpulations in Globular Clusters). The objective of this survey is the study of multiple stellar populations in the largest sample of globular clusters homo geneously analysed to date. To this aim we obtained high signal-to-noise (S/N>50) photometry for main sequence stars with mass down to ~0.5 M_SUN in a large sample of clusters using both archival and proprietary U, B, V, and I data from ground-based telescopes. In this paper, we focus on the occurrence of multiple stellar populations in twenty three clusters. We have defined a new photometric index cubi= (U-B)-(B-I), that turns out to be very effective for identifying multiple sequences along the red giant branch (RGB). We found that in the V-cubi diagram all clusters presented in this paper show broadened or multimodal RGBs, with the presence of two or more components. We found a direct connection with the chemical properties of different sequences, that display different abundances of light elements (O, Na, C, N, and Al). The cubi index is also a powerful tool to identify distinct sequences of stars along the horizontal branch and, for the first time in the case of NGC104 (47 Tuc), along the asymptotic giant branch. Our results demonstrate that i) the presence of more than two stellar populations is a common feature among globular clusters, as already highlighted in previous work; ii) multiple sequences with different chemical contents can be easily identified by using standard Johnson photometry obtained with ground-based facilities; iii) in the study of GC multiple stellar populations the cubi index is alternative to spectroscopy, and has the advantage of larger statistics.
We present a detailed study of the star formation history (SFH) of the Tucana dwarf spheroidal galaxy. High quality, deep HST/ACS data, allowed us to obtain the deepest color-magnitude diagram to date, reaching the old main sequence turnoff (F814 ~ 2 9) with good photometric accuracy. Our analysis, based on three different SFH codes, shows that Tucana is an old and metal-poor stellar system, which experienced a strong initial burst of star formation at a very early epoch (~ 13 Gyr ago) which lasted a maximum of 1 Gyr (sigma value). We are not able to unambiguously answer the question of whether most star formation in Tucana occurred before or after the end of the reionization era, and we analyze alternative scenarios that may explain the transformation of Tucana from a gas-rich galaxy into a dSph. Current measurements of its radial velocity do not preclude that Tucana may have crossed the inner regions of the Local Group once, and so gas stripping by ram pressure and tides due to a close interaction cannot be ruled out. On the other hand, the high star formation rate measured at early times may have injected enough energy into the interstellar medium to blow out a significant fraction of the initial gas content. Gas that is heated but not blown out would also be more easily stripped via ram pressure. We compare the SFH inferred for Tucana with that of Cetus, the other isolated LG dSph galaxy in the LCID sample. We show that the formation time of the bulk of star formation in Cetus is clearly delayed with respect to that of Tucana. This reinforces the conclusion of Monelli et al. (2010) that Cetus formed the vast majority of its stars after the end of the reionization era implying, therefore, that small dwarf galaxies are not necessarily strongly affected by reionization, in agreement with many state-of-the-art cosmological models. [abridged]
We report the detection and analysis of the red giant branch luminosity function bump in a sample of isolated dwarf galaxies in the Local Group. We have designed a new analysis approach comparing the observed color-magnitude diagrams with theoretical best-fit color-magnitude diagrams derived from precise estimates of the star formation histories of each galaxy. This analysis is based on studying the difference between the V-magnitude of the RGB bump and the horizontal branch at the level of the RR Lyrae instability strip (Delta_vhbb) and we discuss here a technique for reliably measuring this quantity in complex stellar systems. By using this approach, we find that the difference between the observed and predicted values of Delta_vhbb is +0.13 +/- 0.14 mag. This is smaller, by about a factor of two, than the well-known discrepancy between theory and observation at low metallicity commonly derived for Galactic globular clusters. This result is confirmed by a comparison between the adopted theoretical framework and empirical estimates of the Delta_vhbb parameter for both a large database of Galactic globular clusters and for four other dSph galaxies for which this estimate is available in the literature. We also investigate the strength of the red giant branch bump feature (R_bump), and find very good agreement between the observed and theoretically predicted R_bump values. This agreement supports the reliability of the evolutionary lifetimes predicted by theoretical models of the evolution of low-mass stars.
We present accurate new ultraviolet and optical BVI photometry for the Galactic globular cluster ngc2808, based on both ground-based and archival HST imagery. From this we have selected a sample of ~2,000 HB stars; given the extensive wavelength rang e considered and the combination of both high-angular-resolution and wide-field photometric coverage, our sample should be minimally biased. We divide the HB stars into three radial bins and find that the relative fractions of cool, hot and extreme HB stars do not change radically when moving from the center to the outskirts of the cluster: the difference is typically smaller than ~2sigma. These results argue against the presence of strong radial differentiation among any stellar subpopulations having distinctly different helium abundances. The ratio between HB and RG stars brighter than the ZAHB steadly increases when moving from the innermost to the outermost cluster regions. The difference is larger than ~4sigma and indicates a deficiency of bright RGs in the outskirts of the cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا