ترغب بنشر مسار تعليمي؟ اضغط هنا

We comment on the model proposed by Orenstein and Dodge in arXiv:1506.06758v1, which describes time-domain terahertz measurements of transiently generated, high-electron-mobility (or superconducting) phases of solids. The authors main conclusion is t hat time-domain terahertz spectroscopy does not measure a response function that is mathematically identical to the transient optical conductivity. We show that although this is correct, the difference between the measured response function and the microscopic optical conductivity is small for realistic experimental parameters. We also show that for the experiments reported by our group on light-induced superconducting-like phases in cuprates and in organic conductors, the time-domain terahertz yields a very good estimate for the optical conductivity.
The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conduct or K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.
Femtosecond relaxation of photo-excited quasiparticles in the one dimensional Mott insulator ET-F2TCNQ are measured as a function of external pressure, which is used to tune the electronic structure. By fitting the static optical properties and measu ring femtosecond decay times at each pressure value, we correlate the relaxation rates with the electronic bandwidth t and on the intersite correlation energy V. The scaling of relaxation times with microscopic parameters is different than for metals and semiconductors. The competition between localization and delocalization of the Mott-Hubbard exciton dictates the efficiency of the decay, as exposed by a fit based on the solution of the time-dependent extended Hubbard Hamiltonian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا