ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{uparrow}(e,e^prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-re versal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero $A_y$ can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at $Q^{2}=$ 0.13, 0.46 and 0.97 GeV$^{2}$. These measurements demonstrate, for the first time, that the $^3$He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)$sigma$. Using measured proton-to-$^{3}$He cross-section ratios and the effective polarization approximation, neutron asymmetries of $-$(1-3)% were obtained. The neutron asymmetry at high $Q^2$ is related to moments of the Generalized Parton Distributions (GPDs). Our measured neutron asymmetry at $Q^2=0.97$ GeV$^2$ agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.
We present a precise measurement of double-polarization asymmetries in the $^3vec{mathrm{He}}(vec{mathrm{e}},mathrm{e}mathrm{d})$ reaction. This particular process is a uniquely sensitive probe of hadron dynamics in $^3mathrm{He}$ and the structure o f the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at $Q^2 = 0.25,(mathrm{GeV}/c)^2$ for missing momenta up to $270,mathrm{MeV}/c$. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on $p_mathrm{m}$ and $omega$, but are systematically offset. Beyond the region of the quasi-elastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two- and/or three-body dynamics is required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا