ترغب بنشر مسار تعليمي؟ اضغط هنا

We studied the effect of primordial non-Gaussianity with varied bispectrum shapes on the number counts of signal-to-noise peaks in wide field cosmic shear maps. The two cosmological contributions to this particular weak lensing statistic, namely the chance projection of Large Scale Structure and the occurrence of real, cluster-sized dark matter halos, have been modeled semi-analytically, thus allowing to easily introduce the effect of non-Gaussian initial conditions. We performed a Fisher matrix analysis by taking into account the full covariance of the peak counts in order to forecast the joint constraints on the level of primordial non-Gaussianity and the amplitude of the matter power spectrum that are expected by future wide field imaging surveys. We find that positive-skewed non-Gaussianity increases the number counts of cosmic shear peaks, more so at high signal-to-noise values, where the signal is mostly dominated by massive clusters as expected. The increment is at the level of ~1 for f_NL=10 and ~10 for f_NL=100 for a local shape of the primordial bispectrum, while different bispectrum shapes give generically a smaller effect. For a future survey on the model of the proposed ESA space mission Euclid and by avoiding the strong assumption of being capable to distinguish the weak lensing signal of galaxy clusters from chance projection of Large Scale Structures we forecasted a 1-sigma error on the level of non-Gaussianity of ~30-40 for the local and equilateral models, and of ~100-200 for the less explored enfolded and orthogonal bispectrum shapes.
Aims. We calibrate the number density, completeness, reliability and the lower mass limit of galaxy-cluster detections through their thermal SZ signal, and compare them to X-ray cluster detections. Methods. We simulate maps of the thermal SZ effect and the X-ray emission from light cones constructed in a large, hydrodynamical, cosmological simulation volume, including realistic noise contributions. The maps are convolved with linear, optimised, single- and multi-band filters to identify local peaks and their signal-to-noise ratios. The resulting peak catalogues are then compared to the halo population in the simulation volume to identify true and spurious detections. Results. Multi-band filtering improves the statistics of SZ cluster detections considerably compared to single-band filtering. Observations with the characteristics of ACT detect clusters with masses M>6-9e13 M_o/h, quite independent of redshift, reach 50% completeness at ~1e14 M_o/h and 100% completeness at ~2e14 M_o/h. Samples are contaminated by only a few per cent spurious detections. This is broadly comparable to X-ray cluster detections with XMM-Newton with 100 ks exposure time in the soft band, except that the mass limit for X-ray detections increases much more steeply with redshift than for SZ detections. A comparison of true and filtered signals in the SZ and X-ray maps confirms that the filters introduce at most a negligible bias.
We develop and apply an analytic method to predict peak counts in weak-lensing surveys. It is based on the theory of Gaussian random fields and suitable to quantify the level of spurious detections caused by chance projections of large-scale structur es as well as the shape and shot noise contributed by the background galaxies. We compare our method to peak counts obtained from numerical ray-tracing simulations and find good agreement at the expected level. The number of peak detections depends substantially on the shape and size of the filter applied to the gravitational shear field. Our main results are that weak-lensing peak counts are dominated by spurious detections up to signal-to-noise ratios of 3--5 and that most filters yield only a few detections per square degree above this level, while a filter optimised for suppressing large-scale structure noise returns up to an order of magnitude more.
129 - M. Maturi , C. Mignone 2009
We define an optimal basis system into which cosmological observables can be decomposed. The basis system can be optimised for a specific cosmological model or for an ensemble of models, even if based on drastically different physical assumptions. Th e projection coefficients derived from this basis system, the so-called features, provide a common parameterisation for studying and comparing different cosmological models independently of their physical construction. They can be used to directly compare different cosmologies and study their degeneracies in terms of a simple metric separation. This is a very convenient approach, since only very few realisations have to be computed, in contrast to Markov-Chain Monte Carlo methods. Finally, the proposed basis system can be applied to reconstruct the Hubble expansion rate from supernova luminosity distance data with the advantage of being sensitive to possible unexpected features in the data set. We test the method both on mock catalogues and on the SuperNova Legacy Survey data set.
299 - M. Maturi 2007
Observations of the Cosmic Microwave Background (CMB) have revealed an unexpected quadrupole-octopole alignment along a preferred axis pointing toward the Virgo cluster. We here investigate whether this feature can be explained in the framework of th e concordance model by secondary anisotropies produced by the non-linear evolution of the gravitational potential, the so-called Rees-Sciama (RS) effect. We focus on the effect caused by the local superclusters, which we calculate using a constrained high-resolution hydrodynamical simulation, based on the IRAS 1.2-Jy all-sky galaxy redshift survey, which reproduces the main structures of our Universe out to a distance of 110 Mpc from our Galaxy. The resulting RS effect peaks at low multipoles and has a minimum/maximum amplitude of -6.6mu K 1.9mu K. Even though its quadrupole is well aligned with the one measured for the CMB, its amplitude is not sufficient to explain the observed magnitude of the quadrupole/octopole alignment. In addition, we analyze the WMAP-3 data with a linear matched filter in an attempt to determine an upper limit for the RS signal amplitude on large scales. We found that it is possible to infer a weak upper limit of 30mu K for its maximum amplitude.
149 - A. Waelkens 2007
We consider the role of the galactic kinetic Sunyaev Zeldovich (SZ) effect as a CMB foreground. While the galactic thermal Sunyaev Zeldovich effect has previously been studied and discarded as a potential CMB foreground, we find that the kinetic SZ e ffect is dominant in the galactic case. We analyse the detectability of the kinetic SZ effect by means of an optimally matched filter technique applied to a simulation of an ideal observation. We obtain no detection, getting a S/N ratio of 0.1, thereby demonstrating that the kinetic SZ effect can also safely be ignored as a CMB foreground. However we provide maps of the expected signal for inclusion in future high precision data processing. Furthermore, we rule out the significant contamination of the polarised CMB signal by second scattering of galactic kinetic Sunyaev-Zeldovich photons, since we show that the scattering of the CMB quadrupole photons by galactic electrons is a stronger effect than the Sunyaev Zeldovich second scattering, and has already been shown to produce no significant polarised contamination. We confirm the latter assessment also by means of an optimally matched filter.
The polarization sensitivity of the upcoming millimetric observatories will open new possibilities for studying the properties of galaxy clusters and for using them as powerful cosmological probes. For this reason it is necessary to investigate in de tail the characteristics of the polarization signals produced by their highly ionized intra-cluster medium (ICM). This work is focussed on the polarization effect induced by the ICM bulk motions, the so-called kpSZ signal, which has an amplitude proportional to the optical depth and to the square of the tangential velocity. In particular we study how this polarization signal is affected by the internal dynamics of galaxy clusters and what is its dependence on the physical modelling adopted to describe the baryonic component. This is done by producing realistic kpSZ maps starting from the outputs of two different sets of high-resolution hydrodynamical N-body simulations. The first set (17 objects) follows only non-radiative hydrodynamics, while for each of 9 objects of the second set we implement four different kinds of physical processes. Our results shows that the kpSZ signal turns out to be a very sensitive probe of the dynamical status of galaxy clusters. We find that major merger events can amplify the signal up to one order of magnitude with respect to relaxed clusters, reaching amplitude up to about 100 nuK. This result implies that the internal ICM dynamics must be taken into account when evaluating this signal because simplicistic models, based on spherical rigid bodies, may provide wrong estimates. Finally we find that the dependence on the physical modelling of the baryonic component is relevant only in the very inner regions of clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا