ترغب بنشر مسار تعليمي؟ اضغط هنا

64 - P. Procopio 2011
The Simultaneous Medicina-{it Planck} Experiment (SiMPlE) is aimed at observing a selected sample of 263 extragalactic and Galactic sources with the Medicina 32-m single dish radio telescope in the same epoch as the Planck satellite observations. The data acquired with a frequency coverage down to 5 GHz, also combined with Planck at frequencies above 30 GHz, will constitute a useful reference catalogue of bright sources over the whole Northern hemisphere. Furthermore, source observations performed in different epochs and comparison with other catalogues allow the investigation of source variabilities on different timescales. In this work, we describe the sample selection, the on-going data acquisition campaign, the data reduction procedures, the developed tools, and the comparison with other data-sets. We present the data at 5 and 8.3 GHz for the SiMPlE Northern Sample consisting of 79 sources with $delta geq 45^circ$ selected in our catalogue and observed during the first 6 months of the project. A first analysis of their spectral behaviour and long-term variability is also presented.
We have analyzed the efficiency in source detection and flux density estimation of blind and non-blind detection techniques exploiting the MHW2 filter applied to the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year maps. A comparison with the AT20G Bright Source Sample (Massardi et al. 2008), with a completeness limit of 0.5 Jy and accurate flux measurements at 20 GHz, close to the lowest frequency of WMAP maps, has allowed us to assess the completeness and the reliability of the samples detected with the two approaches, as well as the accuracy of flux and error estimates, and their variations across the sky. The uncertainties on flux estimates given by our procedure turned out to be about a factor of 2 lower than the rms differences with AT20G measurements, consistent with the smoothing of the fluctuation field yielded by map filtering. Flux estimates were found to be essentially unbiased except that, close to the detection limit, a substantial fraction of fluxes are found to be inflated by the contribution of underlying positive fluctuations. This is consistent with expectations for the Eddington bias associated to the true errors on flux density estimates. The blind and non-blind approaches are found to be complementary: each of them allows the detection of sources missed by the other. Combining results of the two methods on the WMAP 5-year maps we have expanded the non-blindly generated New Extragalactic WMAP Point Source (NEWPS) catalogue (Lopez-Caniego et al. 2007) that was based on WMAP 3-year maps. After having removed the probably spurious objects not identified with known radio sources, the new version of the NEWPS catalogue, NEWPS_5yr comprises 484 sources detected with a signal-to-noise ratio SNR>5.
We present results on spectral index distributions, number counts, redshift distribution and other general statistical properties of extragalactic point sources in the NEWPS5 sample Lopez-Caniego et al. (2007). The flux calibrations at all the WMAP c hannels have been reassessed both by comparison with ground based observations and through estimates of the effective beam areas. The two methods yield consistent statistical correction factors. A search of the NED has yielded optical identifications for 89% of sources in the complete sub-sample of 252 sources with S/N>5 and S>1.1 Jy at 23 GHz; 5 sources turned out to be Galactic and were removed. The NED also yielded redshifts for 92% of the extragalactic sources at |b|>10deg. Their distribution was compared with model predictions; the agreement is generally good but a possible discrepancy is noted. Using the 5 GHz fluxes from the GB6 or PMN surveys, we find that 76% of the 191 extragalactic sources with S_23GHz>1.3,Jy can be classified as flat-spectrum sources between 5 and 23 GHz. A spectral steepening is observed at higher frequencies: only 59% of our sources are still flat-spectrum sources between 23 and 61 GHz and the average spectral indexes steepen from <alpha_5^23>= 0.01pm 0.03 to <alpha_41^61>= 0.37pm 0.03. We think, however, that the difference may be due to a selection effect. The source number counts have a close to Euclidean slope and are in good agreement with the predictions of the cosmological evolution model by De Zotti et al. (2005). The observed spectral index distributions were exploited to get model-independent extrapolations of counts to higher frequencies. The risks of such operations are discussed and reasons of discrepancies with other recent estimates are clarified.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا