ترغب بنشر مسار تعليمي؟ اضغط هنا

The structural and magnetic properties of two mixed-valence cobaltites with formal population of 0.30 Co$^{4+}$ ions per f.u., (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ ($y=0$ and 0.15), have been studied down to very low temperatures by means of the high-resolution neutron diffraction, SQUID magnetometry and heat capacity measurements. The results are interpreted within the scenario of the spin-state crossover from a room-temperature mixture of the intermediate spin Co$^{3+}$ and low spin Co$^{4+}$ (IS/LS) at the to the LS/LS mixture in the sample ground states. In contrast to the yttrium free $y=0$ that retains the metallic-like character and exhibits ferromagnetic ordering below 55 K, the doped system $y=0.15$ undergoes a first-order metal-insulator transition at 132 K, during which not only the crossover to low spin states but also a partial electron transfer from Pr$^{3+}$ 4f to cobalt 3d states take place simultaneously. Taking into account the non-magnetic character of LS Co$^{3+}$, such valence shift electronic transition causes a magnetic dilution, formally to 0.12 LS Co$^{4+}$ or 0.12 $t_{2g}$ hole spins per f.u., which is the reason for an insulating, highly non-uniform magnetic ground state without long-range order. Nevertheless, even in that case there exists a relatively strong molecular field distributed over all the crystal lattice. It is argued that the spontaneous FM order in $y=0$ and the existence of strong FM correlations in $y=0.15$ apparently contradict the single $t_{2g}$ band character of LS/LS phase. The explanation we suggest relies on a model of the defect induced, itinerant hole mediated magnetism, where the defects are identified with the magnetic high-spin Co$^{3+}$ species stabilized near oxygen vacancies.
56 - P. Novak , K. Knizek , M. Marysko 2013
Fifteen parameters characterizing the crystal field of rare-earth ions in the RMO$_3$ perovskites (R = Pr, Nd, M = Ga, Co) are calculated by expanding the local Hamiltonian expressed in the basis of Wannier functions into a series of spherical tensor operators. The method contains a single adjustable parameter that characterizes the hybridization of R($4f$) states with the states of oxygen ligands. Subsequently the energy levels and magnetic moments of trivalent R ion are determined by diagonalization of an effective Hamiltonian which, besides the crystal field, contains the $4f$ electron-electron repulsion, spin-orbit coupling and interaction with magnetic field. In the Ga compounds the energy levels of the ground multiplet agree within few meV with those determined experimentally by other authors. For all four compounds in question the temperature dependence of magnetic susceptibility is measured on polycrystalline samples and compared with the results of calculation. For NdGaO$_3$ theory is also compared with the magnetic measurements on a single crystal presented by Luis {it et al.} Phys. Rev. B {bf 58}, 798 (1998). A good agreement between the experiment and theory is found.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا