ترغب بنشر مسار تعليمي؟ اضغط هنا

280 - F. Romeo , R. Citro , M. Marinaro 2008
We study the time-dependent transport of charge and spin through a ring-shaped region sequentially coupled to a weakly interacting quantum dot in the presence of an Aharonov-Bohm flux and spin-orbit interaction. The time-dependent modulation of the s pin-orbit interaction, or of the corresponding Aharonov-Casher flux, together with the modulation of the dot-level induces an electrically pumped spin current even in absence of a charge current. The results beyond the adiabatic regime show that an additional rectification current proportional to cos(phi), being phi the relative phase between the time varying parameters, is generated. We discuss the relevance of such term in connection with recent experiments on out-of-equilibrium quantum dots.
On the basis of a semi-phenomenological model, it is argued that the high energy anomaly observed in recent photoemission experiments on cuprates is caused by interaction with an overdamped bosonic mode in the mid-infrared region of the spectrum. Ana lysis of optical conductivity allows to connect this excitation to the incoherent charge response reported for the majority of high Tc materials and some other perovskites. We show that its large damping is an essential feature responsible for the waterfall dispersion and linewidth of the spectral weight.
52 - F. Romeo , R. Citro , M. Marinaro 2007
The conductance and the transmittance phase shifts of a two-terminal Aharonov-Bohm (AB) ring are analyzed in the presence of mechanical displacements due to coupling to an external can- tilever. We show that phase rigidity is broken, even in the line ar response regime, by means of inelastic scattering due to phonons. Our device provides a way of observing continuous variation of the transmission phase through a two-terminal nano-electro-mechanical system (NEMS). We also propose measurements of phase shifts as a way to determine the strength of the electron-phonon coupling in NEMS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا