ترغب بنشر مسار تعليمي؟ اضغط هنا

We find that the spin susceptibility of a two-dimensional electron system with valley degeneracy does not grow critically at low densities, at variance with experimental results [A. Shashkin et al., Phys. Rev. Lett. 96, 036403 (2006)]. We ascribe thi s apparent discrepancy to the weak disorder present in experimental samples. Our prediction is obtained from accurate correlation energies computed with state of-the-art diffusion Monte Carlo simulations and fitted with an analytical expression which also provides a local spin density functional for the system under investigation.
419 - M. Marchi , S. Azadi , M. Casula 2009
We introduce a method for accurate quantum chemical calculations based on a simple variational wave function, defined by a single geminal that couples all the electrons into singlet pairs, combined with a real space correlation factor. The method use s a constrained variational optimization, based on an expansion of the geminal in terms of molecular orbitals. It is shown that the most relevant non-dynamical correlations are correctly reproduced once an appropriate number $n$ of molecular orbitals is considered. The value of $n$ is determined by requiring that, in the atomization limit, the atoms are described by Hartree-Fock Slater determinants with Jastrow correlations. The energetics, as well as other physical and chemical properties, are then given by an efficient variational approach based on standard quantum Monte Carlo techniques. We test this method on a set of homonuclear (Be2, B2, C2, N2, O2, and F2) and heteronuclear (LiF, and CN) dimers for which strong non-dynamical correlations and/or weak van der Waals interactions are present.
379 - M. Marchi , S. De Palo , S. Moroni 2009
We present component-resolved and total pair distribution functions for a 2DEG with two symmetric valleys. Our results are based on quantum Monte Carlo simulations performed at several densities and spin polarizations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا