ترغب بنشر مسار تعليمي؟ اضغط هنا

RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite of its import ance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base-pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces and the misfolding probability obtained in the experiments.
By exerting mechanical force it is possible to unfold/refold RNA molecules one at a time. In a small range of forces, an RNA molecule can hop between the folded and the unfolded state with force-dependent kinetic rates. Here, we introduce a mesoscopi c model to analyze the hopping kinetics of RNA hairpins in an optical tweezers setup. The model includes different elements of the experimental setup (beads, handles and RNA sequence) and limitations of the instrument (time lag of the force-feedback mechanism and finite bandwidth of data acquisition). We investigated the influence of the instrument on the measured hopping rates. Results from the model are in good agreement with the experiments reported in the companion article (1). The comparison between theory and experiments allowed us to infer the values of the intrinsic molecular rates of the RNA hairpin alone and to search for the optimal experimental conditions to do the measurements. We conclude that long handles and soft laser traps represent the best conditions to extract rate estimates that are closest to the intrinsic molecular rates. The methodology and rationale presented here can be applied to other experimental setups and other molecules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا