ترغب بنشر مسار تعليمي؟ اضغط هنا

The functional renormalization group (RG) in combination with Fermi surface patching is a well-established method for studying Fermi liquid instabilities of correlated electron systems. In this article, we further develop this method and combine it w ith mean-field theory to approach multiband systems with spin-orbit coupling, and we apply this to a tight-binding Rashba model with an attractive, local interaction. The spin dependence of the interaction vertex is fully implemented in a RG flow without SU(2) symmetry, and its momentum dependence is approximated in a refined projection scheme. In particular, we discuss the necessity of including in the RG flow contributions from both bands of the model, even if they are not intersected by the Fermi level. As the leading instability of the Rashba model, we find a superconducting phase with a singlet-type interaction between electrons with opposite momenta. While the gap function has a singlet spin structure, the order parameter indicates an unconventional superconducting phase, with the ratio between singlet and triplet amplitudes being plus or minus one on the Fermi lines of the upper or lower band, respectively. We expect our combined functional RG and mean-field approach to be useful for an unbiased theoretical description of the low-temperature properties of spin-based materials.
We investigate the phase diagram of two-component fermions in the BCS-BEC crossover. Using functional renormalization group equations we calculate the effect of quantum fluctuations on the fermionic self-energy parametrized by a wavefunction renormal ization, an effective Fermi radius and the gap. This allows us to follow the modifications of the Fermi surface and the dispersion relation for fermionic excitations throughout the whole crossover region. We also determine the critical temperature of the second order phase transition to superfluidity. Our results are in agreement with BCS theory including Gorkovs correction for small negative scattering length a and with an interacting Bose gas for small positive a. At the unitarity point the result for the gap at zero temperature agrees well with Quantum-Monte-Carlo simulations while the critical temperature differs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا