ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multi-dimensional simulations with basic spectral radiative transfer when the computation al resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into trapped and streaming particle components. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit. For a smooth transition to the free streaming regime, this diffusion source is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. A geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, reactions with trapped particles on fast time scales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavour neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multi-dimensional case is also discussed.
Few years ago, Boltzmann neutrino transport led to a new and reliable generation of spherically symmetric models of stellar core collapse and postbounce evolution. After the failure to prove the principles of the supernova explosion mechanism, these sophisticated models continue to illuminate the close interaction between high-density matter under extreme conditions and the transport of leptons and energy in general relativistically curved space-time. We emphasize that very different input physics is likely to be relevant for the different evolutionary phases, e.g. nuclear structure for weak rates in collapse, the equation of state of bulk nuclear matter during bounce, multidimensional plasma dynamics in the postbounce evolution, and neutrino cross sections in the explosive nucleosynthesis. We illustrate the complexity of the dynamics using preliminary 3D MHD high-resolution simulations based on parameterized deleptonization. With established spherically symmetric models we show that typical features of the different phases are reflected in the predicted neutrino signal and that a consistent neutrino flux leads to electron fractions larger than 0.5 in neutrino-driven supernova ejecta.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا