ترغب بنشر مسار تعليمي؟ اضغط هنا

Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star.
Optical integral-field spectroscopy was used to investigate the planetary nebula NGC 3242. We analysed the main morphological components of this source, including its knots, but not the halo. In addition to revealing the properties ofthe physical and chemical nature of this nebula, we also provided reliable spatially resolved constraints that can be used for future photoionisation modelling of the nebula. The latter is ultimately necessary to obtain a fully self-consistent 3D picture of the physical and chemical properties of the object. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Maps and values for specific morphological zones for the detected emission-lines were obtained and analysed with routines developed by the authors to derive physical and chemical conditions of the ionised gas in a 2D fashion. We obtained spatially resolved maps and mean values of the electron densities, temperatures, and chemical abundances, for specific morphological structures in NGC 3242. These results show the pixel-to-pixel variations of the the small- and large-scale structures of the source. These diagnostic maps provide information free from the biases introduced by traditional single long-slit observations. In general, our results are consistent with a uniform abundance distribution for the object, whether we look at abundance maps or integrated fluxes from specified morphological structures. The results indicate that special care should be taken with the calibration of the data and that only data with extremely good signal-to-noise ratio and spectral coverage should be used to ensure the detection of possible spatial variations.
In this paper we present an analysis of the physical and chemical conditions of the planetary nebula NGC 40 through spatially-resolved spectroscopic maps. We also introduce a new algorithm --2D_NEB-- based on the well-established IRAF nebular package , which was developed to enable the use of the spectroscopic maps to easily estimate the astrophysical quantities of ionised nebulae. The 2D_NEB was benchmarked, and we clearly show that it works properly, since it compares nicely with the IRAF nebular software. Using this software, we derive the maps of several physical parameters of NGC 40. From these maps, we conclude that Te[NII] shows only a slight temperature variation from region to region, with its values constrained between ~8,000 K and ~9,500 K. Electron densities, on the other hand, have a much more prominent spatial variation, as Ne[SII] values vary from ~1,000 cm^(-3) to ~3,000 cm^(-3). Maps of the chemical abundances also show significant variations. From the big picture of our work, we strongly suggest that analysis with spatial resolution be mandatory for more complete study of the physical and chemical properties of planetary nebulae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا