ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by seve ral orders of magnitude, taking advantage of long storage of Ultracold neutrons at specula trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.
The proton asymmetry parameter C in neutron decay describes the correlation between neutron spin and proton momentum. In this Letter, the first measurement of this quantity is presented. The result C=-0.2377(26) agrees with the Standard Model expecta tion. The coefficient C provides an additional parameter for new and improved Standard Model tests. From a differential analysis of the same data (assuming the Standard Model), we obtain lambda=-1.275(16) as ratio of axial-vector and vector coupling constant.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا