ترغب بنشر مسار تعليمي؟ اضغط هنا

Aims: Hydrogen deficient white dwarfs are characterized by very dense, fluid-like atmospheres of complex physics and chemistry that are still poorly understood. The incomplete description of these atmospheres by the models results in serious problems with the description of spectra of these stars and subsequent difficulties in derivation of their surface parameters. Here, we address the problem of infrared (IR) opacities in the atmospheres of cool white dwarfs by direct $ab$ $initio$ simulations of IR absorption of dense helium. Methods: We applied state-of-the-art density functional theory-based quantum molecular dynamics simulations to obtain the time evolution of the induced dipole moment. The IR absorption coefficients were obtained by the Fourier transform of the dipole moment time autocorrelation function. Results: We found that a dipole moment is induced due to three- and more-body simultaneous collisions between helium atoms in highly compressed helium. This results in a significant IR absorption that is directly proportional to $rm rho_{rm He}^3$, where $rho_{rm He}$ is the density of helium. To our knowledge, this absorption mechanism has never been measured or computed before and is therefore not accounted for in the current atmosphere models. It should dominate the other collisionally induced absorptions (CIA), arising from $rm H-He$ and $rm H_2-He$ pair collisions, and therefore shape the IR spectra of helium-dominated and pure helium atmosphere cool white dwarfs for $rm He/H>10^4$. Conclusions: Our work shows that there exists an unaccounted IR absorption mechanism arising from the multi-collisions between He atoms in the helium-rich atmospheres of cool white dwarfs, including pure helium atmospheres. This absorption may be responsible for a yet unexplained frequency dependence of near- and mid- IR spectra of helium-rich stars.
Context. Our Local Group of galaxies appears to be moving relative to the cosmic microwave background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the we ight of type Ia supernovae (SNe Ia) has increased recently with the continuously improving statistics of available low-redshift supernovae. Aims. We measured the bulk flow in the nearby universe ($0.015 < z < 0.1$) using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the Union2 compilation of SN Ia data already in the literature. Methods. The bulk flow velocity was determined from SN data binned in redshift shells by including a coherent motion (dipole) in a cosmological fit. Additionally, a method of spatially smoothing the Hubble residuals was used to verify the results of the dipole fit. To constrain the location and mass of a potential mass concentration (e.g., the Shapley supercluster) responsible for the peculiar motion, we fit a Hubble law modified by adding an additional mass concentration. Results. The analysis shows a bulk flow that is consistent with the direction of the CMB dipole up to $z sim 0.06$, thereby doubling the volume over which conventional distance measures are sensitive to a bulk flow. We see no significant turnover behind the center of the Shapley supercluster. A simple attractor model in the proximity of the Shapley supercluster is only marginally consistent with our data, suggesting the need for another, more distant source. In the redshift shell $0.06 < z < 0.1$, we constrain the bulk flow velocity to $< 240~textrm{km s}^{-1}$ (68% confidence level) for the direction of the CMB dipole, in contradiction to recent claims of the existence of a large-amplitude dark flow.
Over the last decade experimental studies have shown a large B isotope fractionation between materials carrying boron incorporated in trigonally and tetrahedrally coordinated sites, but the mechanisms responsible for producing the observed isotopic s ignatures are poorly known. In order to understand the boron isotope fractionation processes and to obtain a better interpretation of the experimental data and isotopic signatures observed in natural samples, we use first principles calculations based on density functional theory in conjunction with ab initio molecular dynamics and a new pseudofrequency analysis method to investigate the B isotope fractionation between B-bearing minerals (such as tourmaline and micas) and aqueous fluids containing H_3BO_3 and H_4BO_4- species. We confirm the experimental finding that the isotope fractionation is mainly driven by the coordination of the fractionating boron atoms and have found in addition that the strength of the produced isotopic signature is strongly correlated with the B-O bond length. We also demonstrate the ability of our computational scheme to predict the isotopic signatures of fluids at extreme pressures by showing the consistency of computed pressure-dependent beta factors with the measured pressure shifts of the B-O vibrational frequencies of H_3BO_3 and H_4BO_4- in aqueous fluid. The comparison of the predicted with measured fractionation factors between boromuscovite and neutral fluid confirms the existence of the admixture of tetrahedral boron species in neutral fluid at high P and T found experimentally, which also explains the inconsistency between the various measurements on the tourmaline-mica system reported in the literature. Our investigation shows that the calculated equilibrium isotope fractionation factors have an accuracy comparable to the experiments.
The recent robust and homogeneous analysis of the worlds supernova distance-redshift data, together with cosmic microwave background and baryon acoustic oscillation data, provides a powerful tool for constraining cosmological models. Here we examine particular classes of scalar field, modified gravity, and phenomenological models to assess whether they are consistent with observations even when their behavior deviates from the cosmological constant Lambda. Some models have tension with the data, while others survive only by approaching the cosmological constant, and a couple are statistically favored over LCDM. Dark energy described by two equation of state parameters has considerable phase space to avoid Lambda and next generation data will be required to constrain such physics.
84 - Patrick B. Hall 2008
We report the discovery of a nearby, old, halo white dwarf candidate from the Sloan Digital Sky Survey. SDSS J110217.48+411315.4 has a proper motion of 1.75 arcsec/year and redder optical colors than all other known featureless (type DC) white dwarfs . We present SDSS imaging and spectroscopy of this object, along with near-infrared photometry obtained at the United Kingdom Infra-Red Telescope. Fitting its photometry with up-to-date model atmospheres, we find that its overall spectral energy distribution is fit reasonably well with a pure hydrogen composition and T_eff~3800 K (assuming log g=8). That temperature and gravity would place this white dwarf at 35 pc from the Sun with a tangential velocity of 290 km/s and space velocities consistent with halo membership; furthermore, its combined main sequence and white dwarf cooling age would be ~11 Gyr. However, if this object is a massive white dwarf, it could be a younger object with a thick disk origin. Whatever its origin, the optical colors of this object are redder than predicted by any current pure hydrogen, pure helium or mixed hydrogen-helium atmospheric model, indicating that there remain problems in our understanding of the complicated physics of the dense atmospheres of cool white dwarfs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا