ترغب بنشر مسار تعليمي؟ اضغط هنا

424 - C.-H. Lee , S. Seitz , M. Kodric 2014
We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using the sample of LBV candidates from the Local Group Galaxy Survey (Massey et al. 2007). We find that M31 LBV candidates show phot ometric variability ranging from 0.375 to 1.576 magnitudes in rP1 during a three year time-span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. (2013). We use these features as selection criteria to search for unknown LBV candidates in M31. We thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from GALEX, which is one of the previously adopted method to search for LBV candidates. The locations of the LBVs are well aligned withM31 spiral arms as seen in the UV light, suggesting they are evolved stars at young age given their high-mass nature. We compare these candidates with the latest Geneva evolutionary tracks, which show that our new M31 LBV candidates are massive evolved stars with an age of 10 to 100 million years.
92 - C.-H. Lee , M. Kodric , S. Seitz 2013
We present a sample of M31 beat Cepheids from the Pan-STARRS 1 PAndromeda campaign. By analyzing three years of PAndromeda data, we identify seventeen beat Cepheids, spreading from a galactocentric distance of 10 to 16 kpc. Since the relation between fundamental mode period and the ratio of fundamental to the first overtone period puts a tight constraint on metallicity we are able to derive the metallicity at the position of the beat Cepheids using the relations from the model of Buchler (2008). Our metallicity estimates show subsolar values within 15 kpc, similar to the metallicities from HII regions (Zurita & Bresolin 2012). We then use the metallicity estimates to calculate the metallicity gradient of the M31 disk, which we find to be closer to the metallicity gradient derived from planetary nebulae (Kwitter et al. 2012) than the metallicity gradient from HII regions (Zurita & Bresolin 2012).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا