ترغب بنشر مسار تعليمي؟ اضغط هنا

In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental under standing of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.
106 - D. Meyers , S. Middey , M. Kareev 2013
Ultrathin epitaxial films of EuNiO3 were grown on a series of substrates traversing highly compressive (- 2.4%) to highly tensile (2.5%) lattice mismatch. X-ray diffraction measurements showed the expected c-lattice parameter shift for compressive st rain, but no detectable shift for tensilely strained substrates, while reciprocal space mapping confirmed the tensile strained film maintained epitaxial coherence. Transport measurements showed a successively (from tensile to compressive) lower resistance and a complete suppression of the metalinsulator transition at highly compressive lattice mismatch. Corroborating these findings, X-ray absorption spectroscopy measurements revealed a strong multiplet splitting in the tensile samples that progressively weakens with increasing compressive strain that, combined with cluster calculations, showed enhanced covalence between Ni-d and O-p orbitals leads to the metallic state.
360 - S. Middey , D. Meyers , M. Kareev 2012
The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize the polarity. We report o n the synthesis of high quality LaNiO$_3$/mLaAlO$_3$ pseudo cubic (111) superlattices on polar (111)-oriented LaAlO$_3$, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.
We report on the synthesis of ultrathin films of highly distorted EuNiO3 (ENO) grown by interrupted pulse laser epitaxy on YAlO3 (YAO) substrates. Through mapping the phase space of nickelate thin film epitaxy, the optimal growth temperatures were fo und to scale linearly with the Goldschmidt tolerance factor. Considering the gibbs energy of the expanding film, this empirical trend is discussed in terms of epitaxial stabilization and the escalation of the lattice energy due to lattice distortions and decreasing symmetry. These findings are fundamental to other complex oxide perovskites, and provide a route to the synthesis of other perovskite structures in ultrathin-film form.
207 - E.J. Moon , B.A. Gray , M. Kareev 2011
We explore the electrical transport and magneto-conductance in quasi two-dimensional strongly correlated ultrathin films of LaNiO$_{3}$ (LNO) to investigate the effect of hetero-epitaxial strain on electron-electron and electron-lattice interactions from the low to intermediate temperature range (2K$sim$170K). The fully epitaxial 10 unit cell thick films spanning tensile strain up to $sim4%$ are used to investigate effects of enhanced carrier localization driven by a combination of weak localization and electron-electron interactions at low temperatures. The magneto-conductance data shows the importance of the increased contribution of weak localization to low temperature quantum corrections. The obtained results demonstrate that with increasing tensile strain and reduced temperature the quantum confined LNO system gradually evolves from the Mott into the Mott-Anderson regime.
116 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv ity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا