ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - M. Jezek , M. Micuda , I. Straka 2014
A quantum analog of the fundamental classical NOT gate is a quantum gate that would transform any input qubit state onto an orthogonal state. Intriguingly, this universal NOT gate is forbidden by the laws of quantum physics. This striking phenomenon has far-reaching implications concerning quantum information processing and encoding information about directions and reference frames into quantum states. It also triggers the question under what conditions the preparation of quantum states orthogonal to input states becomes possible. Here we report on experimental demonstration of orthogonalization of partly unknown single- and two-qubit quantum states. A state orthogonal to an input state is conditionally prepared by quantum filtering, and the only required information about the input state is a mean value of a single arbitrary operator. We show that perfect orthogonalization of partly unknown two-qubit entangled states can be performed by applying the quantum filter to one of the qubits only.
84 - D. M. Jezek , P. Capuzzi , 2013
We investigate the origin of a disagreement between the two-mode model and the exact Gross-Pitaevskii dynamics applied to double-well systems. In general this model, even in its improved version, predicts a faster dynamics and underestimates the crit ical population imbalance separating Josephson and self-trapping regimes. We show that the source of this mismatch in the dynamics lies in the value of the on-site interaction energy parameter. Using simplified Thomas-Fermi densities, we find that the on-site energy parameter exhibits a linear dependence on the population imbalance, which is also confirmed by Gross-Pitaevskii simulations. When introducing this dependence in the two-mode equations of motion, we obtain a reduced interaction energy parameter which depends on the dimensionality of the system. The use of this new parameter significantly heals the disagreement in the dynamics and also produces better estimates of the critical imbalance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا