ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on nonlocal spin transport in mesoscopic superconducting aluminum wires in contact with the ferromagnetic insulator europium sulfide. We find spin injection and long-range spin transport in the regime of the exchange splitting induced by eu ropium sulfide. Our results demonstrate that spin transport in superconductors can be manipulated by ferromagnetic insulators, and opens a new path to control spin currents in superconductors.
Nonequilibrium charge transport in superconductors has been investigated intensely in the 1970s and 80s, mostly in the vicinity of the critical temperature. Much less attention has been focussed on low temperatures, and the role of the quasiparticle spin. We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin tranport by comparison to theoretical models. The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.
We report on an experimental and theoretical study of nonlocal transport in superconductor hybrid structures, where two normal-metal leads are attached to a central superconducting wire. As a function of voltage bias applied to both normal-metal elec trodes, we find surprisingly large nonlocal conductance signals, almost of the same magnitude as the local conductance. We demonstrate that these signals are the result of strong heating of the superconducting wire, and that under symmetric bias conditions, heating mimics the effect of Cooper pair splitting.
There is increasing evidence of a connection between AGN activity and galaxy evolution. To obtain further insight into this potentially important evolutionary phase, we analyse the properties of quasar host galaxies. In this paper, we present a popul ation synthesis modeling technique for off-axis spectra, the results of which constrain host colour and the stellar ages of luminous quasars (M_V(nuc)<-23). Our technique is similar to well established quiescent-galaxy models, modified to accommodate scattered nuclear light (a combination of atmospheric, instrumental and host galaxy scattered light) observed off axis. In our model, subtraction of residual scattered quasar light is performed, while simultaneously modeling the constituent stellar populations of the host galaxy. The reliability of this technique is tested via a Monte-Carlo routine in which the correspondence between synthetic spectra with known parameters and the model output is determined. Application of this model to a preliminary sample of 10 objects is presented and compared to previous studies. Spectroscopic data was obtained via long-slit and integral-field unit observations on the Keck and WIYN telescopes. We confirm that elliptical quasar hosts are distinguishable (bluer) from inactive ellipticals in rest frame B-V colour. Additionally, we note a trend for radio luminous (L_5GHz > 10^40 erg s^-1) quasars to be located in redder host galaxies in comparison to their less luminous radio counterparts. While the host colour and age of our radio luminous sample is in close proximity to the green valley, our radio faint sample is consistent with quiescent star-forming galaxies. However, further observations are needed to confirm these results. Finally, we discuss future applications for our technique on a larger sample of objects being obtained via SALT and WIYN telescope observing campaigns.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا