ترغب بنشر مسار تعليمي؟ اضغط هنا

96 - M. J. Ward 2010
The spectra of AGN from the ultraviolet to the near infrared, exhibit emission lines covering a wide range of ionisation states, from neutral species such as [O I] 6300A, up to [Fe XIV] 5303A. Here we report on some recent studies of the properties o f highly ionised lines (HILs), plus two case studies of individual objects. Future IFU observations at high spatial and good spectral resolution, will probe the excitation and kinematics of the gas in the zone between the extended NLR and unresolved BLR. Multi-component SED fitting can be used to link the source of photoionisation with the strengths and ratios of the HILs.
In this paper we present multiband optical polarimetric observations of the VHE blazar PKS 2155-304 made simultaneously with a H.E.S.S./Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the dataset allowed us to study in detail the temporal evolution of the emission and we found that the particle acceleration timescales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarised mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large scale field is locally organised by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
We use the photoionisation code Cloudy to determine both the location and the kinematics of the optical forbidden, high ionisation line (hereafter, FHIL) emitting gas in the narrow line Seyfert 1 galaxy Ark 564. The results of our models are compared with the observed properties of these emission lines to produce a physical model that is used to explain both the kinematics and the source of this gas. The main features of this model are that the FHIL emitting gas is launched from the putative dusty torus and is quickly accelerated to its terminal velocity of a few hundred km/s. Iron-carrying grains are destroyed during this initial acceleration. This velocity is maintained by a balance between radiative forces and gravity in this super-Eddington source. Eventually the outflow is slowed at large radii by the gravitational forces of and interactions with the host galaxy. In this model, FHIL emission traces the transition between the AGN and bulge zones of influence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا