ترغب بنشر مسار تعليمي؟ اضغط هنا

174 - J. P. Coe , M. J. Paterson 2014
We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two $A_{1}$ singlet states of the CH cation are used as an initial example. We calculate these states with configuration interaction singles (CIS) and state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method we compare the important natural transition geminals with the dominant natural transition orbitals. We then compare SA-MCCI and full configuration interaction (FCI) with regards to the natural transition geminals using the beryllium atom. We compare using the natural transition geminals with analyzing the important configurations in the CI expansion to give the dominant transition for the beryllium atom and the carbon dimer. Finally we calculate the natural transition geminals for two electronic excitations of formamide.
Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from MP2 and QCISD in MCCI calculations of single-point energies. The efficiency and accuracy of approximate natural orbitals in MCCI potential curve calculations for the double hydrogen dissociation of water, the dissociation of carbon monoxide and the dissociation of the nitrogen molecule are then considered in comparison with standard MCCI when using full configuration interaction as a benchmark. We also use the method to produce a potential curve for water in an aug-cc-pVTZ basis. A new way to quantify the accuracy of a potential curve is put forward that takes into account all of the points and that the curve can be shifted by a constant. We adapt a second-order perturbation scheme to work with MCCI (MCCIPT2) and improve the efficiency of the removal of duplicate states in the method. MCCIPT2 is tested in the calculation of a potential curve for the dissociation of nitrogen using both Slater determinants and configuration state functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا