ترغب بنشر مسار تعليمي؟ اضغط هنا

40 - M. J. Coe 2014
On MJD 56590-1 (2013 Oct 25-26) observations of the Magellanic Clouds by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observatory discovered a previously-unreported bright, flaring X-ray source. This source was initially given the i dentification IGR J00569-7226. Subsequent multi-wavelength observations identified the system as new Be/X-ray binary system in the Small Magellanic Cloud. Follow-up X-ray observations by Swift and XMM-Newton revealed an X-ray pulse period of 5.05s and that the system underwent regular occulation/eclipse behaviour every 17d. This is the first reported eclipsing Be/X-ray binary system in the SMC, and only the second such system known to date. Furthermore, the nature of the occultation makes it possible to use the neutron star to X-ray the circumstellar disk, thereby, for the first time, revealing direct observational evidence for its size and clumpy structure. Swift timing measurements allowed for the binary solution to be calculated from the Doppler shifted X-ray pulsations. This solution suggests this is a low eccentricity binary relative to others measured in the SMC. Finally it is interesting to note that the mass determined from this dynamical method for the Be star (approx 13 solar masses) is significantly different from that inferred from the spectroscopic classification of B0.2Ve (approx 16 solar masses) - an effect that has been noted for some other high mass X-ray binary (HMXB) systems.
We present X-ray and optical data on the Be/X-ray binary (BeXRB) pulsar IGR J01054-7253 = SXP11.5 in the Small Magellanic Cloud (SMC). Rossi X-ray Timing Explorer (RXTE) observations of this source in a large X-ray outburst reveal an 11.483 +/- 0.002 s pulse period and show both the accretion driven spin-up of the neutron star and the motion of the neutron star around the companion through Doppler shifting of the spin period. Model fits to these data suggest an orbital period of 36.3 +/- 0.4d and Pdot of (4.7 +/- 0.3) x 10^{-10} ss^{-1}. We present an orbital solution for this system, making it one of the best described BeXRB systems in the SMC. The observed pulse period, spin-up and X-ray luminosity of SXP11.5 in this outburst are found to agree with the predictions of neutron star accretion theory. Timing analysis of the long-term optical light curve reveals a periodicity of 36.70 +/- 0.03d, in agreement with the orbital period found from the model fit to the X-ray data. Using blue-end spectroscopic observations we determine the spectral type of the counterpart to be O9.5-B0 IV-V. This luminosity class is supported by the observed V-band magnitude. Using optical and near-infrared photometry and spectroscopy, we study the circumstellar environment of the counterpart in the months after the X-ray outburst.
89 - M. J. Coe 2009
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8d binary period.
We have monitored 41 Be/X-ray binary systems in the Small Magellanic Cloud over ~9 years using PCA-RXTE data from a weekly survey program. The resulting light curves were analysed in search of orbital modulations with the result that 10 known orbital ephemerides were confirmed and refined, while 10 new ones where determined. A large number of X-ray orbital profiles are presented for the first time, showing similar characteristics over a wide range of orbital periods. Lastly, three pulsars: SXP46.4, SXP89.0 and SXP165 were found to be misidentifications of SXP46.6, SXP91.1 and SXP169, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا