ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a pilot imaging line survey (36.0 - 37.0 GHz, with ~1 km/s spectral channels) with the Expanded Very Large Array for two asymptotic giant branch stars, RW LMi (= CIT6, which has a carbon-rich circumstellar envelope) and IK Tau (= NML Tau , with an oxygen-rich circumstellar envelope). Radio continuum emission consistent with photospheric emission was detected from both stars. From RW LMi we imaged the HC3N (J = 4 -> 3) emission. The images show several partial rings of emission; these multiple shells trace the evolution of the CSE from 400 to 1200 years. SiS (J = 2 -> 1) emission was detected from both RW LMi and IK Tau. For both stars the SiS emission is centrally condensed with the peak line emission coincident with the stellar radio continuum emission. In addition, we have detected weak HC7N (J = 32 -> 31) emission from RW LMi.
We have used the VLBA to measure the annual parallax of the H2O masers in the star-forming region IRAS 00420+5530. This measurement yields a direct distance estimate of 2.17 +/- 0.05 kpc (<3%), which disagrees substantially with the standard kinemati c distance estimate of ~4.6 kpc (according to the rotation curve of Brand and Blitz 1993), as well as most of the broad range of distances (1.7-7.7 kpc) used in various astrophysical analyses in the literature. The 3-dimensional space velocity of IRAS 00420+5530 at this new, more accurate distance implies a substantial non-circular and anomalously slow Galactic orbit, consistent with similar observations of W3(OH) (Xu et al., 2006; Hachisuka et al. 2006), as well as line-of-sight velocity residuals in the rotation curve analysis of Brand and Blitz (1993). The Perseus spiral arm of the Galaxy is thus more than a factor of two closer than previously presumed, and exhibits motions substantially at odds with axisymmetric models of the rotating Galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا