ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - M. Hortacsu 2011
Most of the theoretical physics known today is described by using a small number of differential equations. For linear systems, different forms of the hypergeometric or the confluent hypergeometric equations often suffice to describe the system studi ed. These equations have power series solutions with simple relations between consecutive coefficients and/ or can be represented in terms of simple integral transforms. If the problem is nonlinear, one often uses one form of the Painlev{e} equations. There are important examples, however, where one has to use higher order equations. Heun equation is one of these examples, which recently is often encountered in problems in general relativity and astrophysics. Its special and confluent forms take names as Mathieu, Lam{e} and Coulomb spheroidal equations. For these equations whenever a power series solution is written, instead of a two-way recursion relation between the coefficients in the series, we find one between three or four different ones. An integral transform solution using simpler functions also is not obtainable. The use of this equation in physics and mathematical literature exploded in the later years, more than doubling the number of papers with these solutions in the last decade, compared to time period since this equation was introduced in 1889 up to 2008. We use SCI data to conclude this statement, which is not precise, but in the correct ballpark. Here this equation will be introduced and examples for its use, especially in general relativity literature will be given.
In this work a static solution of Einstein-Cartan (EC) equations in 2+1 dimensional space-time is given by considering classical spin-1/2 field as external source for torsion of the space-time. Here, the torsion tensor is obtained from metricity cond ition for the connection and the static spinor field is determined as the solution of Dirac equation in 2+1 spacetime with non-zero cosmological constant and torsion. The torsion itself is considered as a non-dynamical field.
227 - T. Birkandan , M. Hortacsu 2008
Dirac equation written on the boundary of the Nutku helicoid space consists of a system of ordinary differential equations. We tried to analyze this system and we found that it has a higher singularity than those of the Heuns equations which give the solutions of the Dirac equation in the bulk. We also lose an independent integral of motion on the boundary. This facts explain why we could not find the solution of the system on the boundary in terms of known functions. We make the stability analysis of the helicoid and catenoid cases and end up with an appendix which gives a new example where one encounters a form of the Heun equation.
228 - T. Birkandan , M. Hortacsu 2007
We give examples of where the Heun function exists as solutions of wave equations encountered in general relativity. While the Dirac equation written in the background of Nutku helicoid metric yields Mathieu functions as its solutions in four spaceti me dimensions, the trivial generalization to five dimensions results in the double confluent Heun function. We reduce this solution to the Mathieu function with some transformations. We must apply Atiyah-Patodi-Singer spectral boundary conditions to this system since the metric has a singularity at the origin.
We study the solutions of the Dirac equation in the background of the Nutku helicoid metric. This metric has curvature singularities, which necessitates imposing a boundary to exclude this point. We use the Atiyah-Patodi-Singer non local spectral bou ndary conditions for both the four and the five dimensional manifolds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا