ترغب بنشر مسار تعليمي؟ اضغط هنا

We have created a new semantic tool called AstroConcepts, providing definitions of astronomical concepts present on Web pages. This tool is a Google Chrome plug-in that interrogates the Etymological Dictionary of Astronomy and Astrophysics, developed at Paris Observatory. Thanks to this tool, if one selects an astronomical concept on a web page, a pop-up window will display the definition of the available English or French terms. Another expected use of this facility could be its implementation in Virtual Observatory services.
72 - R. Selier n LERMA 2011
The region of the Small Magellanic Cloud (SMC) with which this paper is concerned contains the highest concentration of IRAS/Spitzer sources, H I emission, and molecular clouds in this neighboring galaxy. However very few studies have been devoted to it, despite these signs of star formation. We present the first detailed study of the compact H II region N33 in the SMC by placing it in a wider context of massive star formation. Moreover, we show that N33 is a particularly interesting candidate for isolated massive star formation. This analysis is based mainly on optical ESO NTT observations, both imaging and spectroscopy, coupled with other archive data, notably Spitzer images (IRAC 3.6, 4.5, 5.8, and 8.0 mic) and 2MASS observations. We derive a number of physical characteristics of the compact H II region N33 for the first time. This gas and dust formation of 7.4 (2.2 pc) in diameter is powered by a massive star of spectral type O6.5-O7 V. The compact H II region belongs to a rare class of H II regions in the Magellanic Clouds, called high-excitation blobs (HEBs). We show that this H II region is not related to any star cluster. Specifically, we do not find any traces of clustering around N33 on scales larger than 10 (~ 3 pc). On smaller scales, there is a marginal stellar concentration, the low density of which, below the 3 sigma level, does not classify it as a real cluster. We also verify that N33 is not a member of any large stellar association. Under these circumstances, N33 is also therefore attractive because it represents a remarkable case of isolated massive-star formation in the SMC. Various aspects of the relevance of N33 to the topic of massive-star formation in isolation are discussed.
167 - V. Charmandaris 2008
We present a study of the mid-infrared properties and dust content of a sample of 27 HII ``blobs, a rare class of compact HII regions in the Magellanic Clouds. A unique feature of this sample is that even though these HII regions are of high and low excitation they have nearly the same physical sizes ~1.5-3 pc. We base our analysis on archival 3-8 microns infrared imagery obtained with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. We find that despite their youth, sub-solar metallicity and varied degrees of excitation, the mid-infrared colors of these regions are similar to those of typical HII regions. Higher excitation ``blobs (HEBs) display stronger 8 micron emission and redder colors than their low-excitation counterparts (LEBs).
Accurate physical parameters of newborn massive stars are essential ingredients to shed light on their formation, which is still an unsolved problem. The rare class of compact H II regions in the Magellanic Clouds (MCs), termed ``high-excitation blob s (HEBs), presents a unique opportunity to acquire this information. These objects (~ 4 to 10, ~ 1 to 3 pc, in diameter) harbor the youngest massive stars of the OB association/molecular cloud complexes in the MCs accessible through high-resolution near-IR and optical techniques. We present a brief overview of the results obtained with HST mainly on two HEBs, one in the LMC (N159-5) and the other in the SMC (N81).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا