ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we present the study of FR Cnc, a young, active and spotted star. We performed analysis of ASAS-3 (The All Sky Automated Survey) data for the years 2002-2008 and amended the value of the rotational period to be 0.826518 d. The amplitude of photo metric variations decreased abruptly in the year 2005, while the mean brightness remained the same, which was interpreted as a quick redistribution of spots. BVRc and Ic broad band photometric calibration was performed for 166 stars in FR Cnc vicinity. The photometry at Terskol Observatory shows two brightening episodes, one of which occurred at the same phase as the flare of 2006 November 23. Polarimetric BVR observations indicate the probable presence of a supplementary source of polarization. We monitored FR Cnc spectroscopically during the years 2004-2008. We concluded that the RV changes cannot be explained by the binary nature of FR Cnc. We determined the spectral type of FR Cnc as K7V. Calculated galactic space-velocity components (U, V, W) indicate that FR Cnc belongs to the young disc population and might also belong to the IC 2391 moving group. Based on LiI 6707.8 measurement, we estimated the age of FR Cnc to be between 10-120 Myr. Doppler Tomography was applied to create a starspot image of FR Cnc. We optimized the goodness of fit to the deconvolved profiles for axial inclination, equivalent width and v sin i, finding v sin i=46.2 km s^-1 and i=55 degrees. The starspot distribution of FR Cnc is also of interest since it is one of the latest spectral types to have been imaged. No polar spot was detected on FR Cnc.
BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominenc e-like structures, spots on the surface and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km/s were detected. We investigated the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. We have analysed high-resolution echelle spectra and also two-band photometry was obtained to produce the light curve and determine the photometric period. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators and taking into account the photometric analysis, we report that the best explanation for the RV variation is the presence of a sub-stellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search program, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا