ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of the electron spin polarization in a correlated two-layer two-dimensional electron system at a total Landau level filling factor of one is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely-spaced two-dimensional electron systems becomes maximized when inter-layer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional Quantum Hall states under electron density imbalances.
100 - X. Huang , W. Dietsche , M. Hauser 2012
We study ring shaped (Corbino) devices made of bilayer two-dimensional electron gases in the total filling factor one quantized Hall phase which is considered to be a coherent BCS-like state of interlayer excitons. Identical Josephson currents are ob served at the two edges while only a negligible conductance between them is found. The maximum Josephson current observed at either edge can be controlled by passing a second interlayer Josephson current at the other edge. Due to the large electric resistance between the two edges, the interaction between them can only be mediated by the neutral interlayer excitonic groundstate.
The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489 , which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.
We have investigated the tunneling properties of an electron double quantum well system where the lowest Landau level of each quantum well is half filled. This system is expected to be a Bose condensate of excitons. Our four-terminal dc measurements reveal a nearly vanishing interlayer voltage and the existence of critical tunneling currents which depend on the strength of the condensate state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا