ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Troj an Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effects
The reaction $^{17}$O($n,alpha$)$^{14}$C was studied at energies from $E_{cm}=0$ to $E_{cm}=350$ keV using the quasi-free deuteron break-up in the three body reaction $^{17}$O$+d rightarrow alpha+ ^{14}$C$+p$, extending the Trojan Horse indirect meth od (THM) to neutron-induced reactions. It is found that the $^{18}$O excited state at $E^*=8.125 pm 0.002$ MeV observed in THM experiments is absent in the direct measurement because of its high centrifugal barrier. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the THM to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا