ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and thermal properties of Ferromagnetic (FM) Ce_{2.15}(Pd_{1-x}Ag_x)_{1.95}In_{0.9} alloys were studied in order to determine the Quantum Critical Point (QCP) at T_C => 0. The increase of band electrons produced by Pd/Ag substitution depress es T_C(x) from 4.1K down to T_C(x=0.5)=1.1K, with a QCP extrapolated to x_{QCP}~ 0.6. Magnetic susceptibility from T>30K indicates an effective moment slightly decreasing from mu_{eff}=2.56mu_B to 2.4mu_B at x=0.5. These values and the paramagnetic temperature theta_P~ -10K exclude significant Kondo screening effects. The T_C(x) reduction is accompanied by a weakening of the FM magnetization and the emergence of a specific heat C_m(T) anomaly at T*~ 1K, without signs of magnetism detected from AC-susceptibility. The magnetic entropy collected around 4K (i.e. the T_C of the x=0 sample) practically does not change with Ag concentration: S_m(4K)~ 0.8 Rln2, suggesting a progressive transfer of FM degrees of freedom to the non-magnetic (NM) component. No antecedent was found concerning any NM anomaly emerging from a FM system at such temperature. The origin of this anomaly is attributed to an entropy bottleneck originated in the nearly divergent power law dependence for T>T*.
Low temperature magnetic and thermal (C_m) properties of the ferromagnetic (FM) alloys Ce_2.15 (Pd_1-x Rh_x)_1.95 In_0.9 were investigated in order to explore the possibility for tuning a quantum critical point (QCP) by doping Pd with Rh. As expected , the magnetic transition observed at T = 4.1K in the parent alloy decreases with increasing Rh concentration. Nevertheless it splits into two transitions, the upper being antiferromagnetic (AF) whereas the lower FM. The AF phase boundary extrapolates to T_N = 0 for x_cr ~ 0.65 whereas the first order FM transition vanishes at x ~ 0.3. The QC character of the T_N => 0 point arises from the divergent T dependence of the tail of C_m/T observed in the x = 0.5 and 0.55 alloys, and the tendency to saturation of the maximum of C_m(T_N)/T as observed in exemplary Ce compounds for T_N => 0. Beyond the critical concentration the unit cell volume deviates from the Vegards law in coincidence with a strong increase of the Kondo temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا