ترغب بنشر مسار تعليمي؟ اضغط هنا

After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power o f high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.
69 - A. Biland 2007
One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, re sulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا