ترغب بنشر مسار تعليمي؟ اضغط هنا

Photodissociation regions (PDRs) contain a large fraction of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star formation, marking the point wh ere all of the photons energetic enough to ionize hydrogen have been absorbed. In this paper we determine the physical properties of the PDRs associated with the star forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star forming regions. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55-650 {mu}m spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines and the total far-infrared flux. These measurements are then compared to standard PDR models. Subsequently detailed numerical PDR models are compared to these predictions, yielding additional insights into the dominant thermal processes in the PDRs and their structures. We find that the PDRs of each object are very similar, and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n $sim$ 10^6 cm^(-3), G$_0$ $sim$ 10^5) interspersed within a lower density, weaker radiation field phase (n $sim$ 10^4 cm^(-3), G$_0$ $sim$ 10^4). We employed two different numerical models to investigate the data, firstly we used RADEX models to fit the peak of the $^{12}$CO ladder, which in conjunction with the properties derived yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the $^{12}$CO ladder was consistent with these components with heating dominated by grain photoelectric heating. An extra excitation component for the highest J lines (J > 20) is required for S 106.
The [CII] 157.74 $mu$m transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [CII] s urface brightness and luminosity with SFR. We conclude that [CII] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGN). The uncertainty of the $Sigma_{rm [CII]}-Sigma_{rm SFR}$ calibration is $pm$0.21 dex. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted $Sigma_{rm[CII]}-Sigma_{rm SFR}$ correlation is valid over almost 5 orders of magnitude in $Sigma_{rm SFR}$, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [CII] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [CII] finds that heating efficiencies are $1%-3%$ in normal galaxies.
We investigate the far infrared spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the SPIRE-FTS, we detect the $^{12}$CO ladder up to J=(13-12), [C I] and [N II] lines, and also strong water li nes more characteristic of UltraLuminous IR Galaxies (ULIRGs). The 12CO line emission is modeled with a combination of a low-velocity C-shock and a PDR. Shocks are required to produce the H2O and most of the high-J 12CO emission. Despite having an infrared luminosity thirty times less than a typical ULIRG, the spectral characteristics and physical conditions of the ISM of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا