ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quan tum Zeno effect is induced by phonon-assisted exciton relaxation between the ancillary dot and the charged dots, which is equivalent to a continuous measurement. We solve analytically the master equation and simulate the dynamics of the system using a realistic set of parameters. In contrast to standard schemes, larger phonon relaxation rates increase the fidelity of the operations.
356 - Y. P. Huang , M. G. Moore 2008
A Mach-Zender interferometer with a gaussian number-difference squeezed input state can exhibit sub-shot-noise phase resolution over a large phase-interval. We obtain the optimal level of squeezing for a given phase-interval $Deltatheta_0$ and partic le number $N$, with the resulting phase-estimation uncertainty smoothly approaching $3.5/N$ as $Deltatheta_0$ approaches 10/N, achieved with highly squeezed states near the Fock regime. We then analyze an adaptive measurement scheme which allows any phase on $(-pi/2,pi/2)$ to be measured with a precision of $3.5/N$ requiring only a few measurements, even for very large $N$. We obtain an asymptotic scaling law of $Deltathetaapprox (2.1+3.2ln(ln(N_{tot}tanDeltatheta_0)))/N_{tot}$, resulting in a final precision of $approx 10/N_{tot}$. This scheme can be readily implemented in a double-well Bose-Einstein condensate system, as the optimal input states can be obtained by adiabatic manipulation of the double-well ground state.
188 - Y. P. Huang , M. G. Moore 2008
The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of $.99$ using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping $etc.$, can be realized with the aid of single-qubit operations.
166 - Y. P. Huang , M. G. Moore 2007
This paper has been withdrawn. It is based on numerical results limited by computing resources to N=3000 atoms. Using a newly understood geometric method we find that the observed scaling with N saturates at around N=7000 or even higher. In light of this new finding we withdraw the paper and will submit a revised manuscript reflecting our new understanding.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا