ترغب بنشر مسار تعليمي؟ اضغط هنا

The Helix Nebula (NGC 7293) is the closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. We aim to study the spatial distribution of the atomic and the molecular gas, and the structure of the photodissociation region along the western rims of the Helix Nebula as seen in the submillimeter range with Herschel. We use 5 SPIRE FTS pointing observations to make atomic and molecular spectral maps. We analyze the molecular gas by modeling the CO rotational lines using a non-local thermodynamic equilibrium (non-LTE) radiative transfer model. For the first time, we have detected extended OH+ emission in a planetary nebula. The spectra towards the Helix Nebula also show CO emission lines (from J= 4 to 8), [NII] at 1461 GHz from ionized gas, and [CI] (2-1), which together with the OH+ lines, trace extended CO photodissociation regions along the rims. The estimated OH+ column density is (1-10)x1e12 cm-2. The CH+ (1-0) line was not detected at the sensitivity of our observations. Non-LTE models of the CO excitation were used to constrain the average gas density (n(H2)=(1-5)x1e5 cm-3) and the gas temperature (Tk= 20-40 K). The SPIRE spectral-maps suggest that CO arises from dense and shielded clumps in the western rims of the Helix Nebula whereas OH+ and [CI] lines trace the diffuse gas and the UV and X-ray illuminated clumps surface where molecules reform after CO photodissociation. [NII] traces a more diffuse ionized gas component in the interclump medium.
We present a 52-671um spectral scan toward SgrA* taken with the PACS and SPIRE spectrometers onboard Herschel. The achieved angular resolution allows us to separate, for the first time at far-IR wavelengths, the emission toward the central cavity (ga s in the inner central parsec of the galaxy) from that of the surrounding circum-nuclear disk. The spectrum toward SgrA* is dominated by strong [OIII], [OI], [CII], [NIII], [NII], and [CI] fine structure lines (in decreasing order of luminosity) arising in gas irradiated by UV-photons from the central stellar cluster. In addition, rotationally excited lines of 12CO (from J=4-3 to 24-23), 13CO, H2O, OH, H3O+, HCO+ and HCN, as well as ground-state absorption lines of OH+, H2O+, H3O+, CH+, H2O, OH, HF, CH and NH are detected. The excitation of the 12CO ladder is consistent with a hot isothermal component at Tk ~ 10^{3.1} K and n(H2)< 10^4 cm^{-3}. It is also consistent with a distribution of temperature components at higher density with most CO at Tk<300 K. The detected molecular features suggest that, at present, neither very enhanced X-ray, nor cosmic-ray fluxes play a dominant role in the heating of the hot molecular gas. The hot CO component (either the bulk of the CO column or just a small fraction depending on the above scenario) results from a combination of UV- and shock-driven heating. If irradiated dense clumps/clouds do not exist, shocks likely dominate the heating of the hot molecular gas. This is consistent with the high-velocity gas detected toward SgrA*.
We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 F eb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics is the key to achieve sensitivity comparable to or better than that for point sources (< 20 -- 95 [MJy/sr]). We describe current activities and progress that are focused on making high quality all-sky survey images of the diffuse far-infrared emission.
We discuss the capability of AKARI in recovering diffuse far-infrared emission, and examine the achieved reliability. Critical issues in making images of diffuse emission are the transient response and long-term stability of the far-infrared detector s. Quantitative evaluation of these characteristics are the key to achieving sensitivity comparable to or better than that for point sources (< 20 -- 95 MJy sr-1). We describe current activity and progress toward the production of high quality images of the diffuse far-infrared emission using the AKARI all-sky survey data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا