ترغب بنشر مسار تعليمي؟ اضغط هنا

Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scatter ing was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance(GDR) were obtained by photo-activation. After a proper correction for multi-step processes the observed quasi-continuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photo effect data obtained previously by neutron detection and corrected in absolute scale using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N = 50 neutron shell, i.e. with the impact of quadrupole deformation and triaxiality. The wide energy coverage of the data allows for a stringent assessment of the dipole sum-rule, and a test of a novel parameterization developed previously which is based upon. This parameterization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in the cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.
The 197Au(gamma,n) reaction is used as an activation standard for photodisintegration studies on astrophysically relevant nuclei. At the bremsstrahlung facility of the superconducting electron accelerator ELBE (Electron Linear accelerator of high Bri lliance and low Emittance) of Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV. The measured activation yield is compared with previous experiments as well as with calculations using Hauser-Feshbach statistical models. It is shown that the experimental data are best described by a two-Lorentzian parametrization with taking the axial deformation of 197Au into account. The experimental 197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method is found to be consistent with previous experimental data using photon scattering or neutron detection methods.
In explosive stellar environments like supernovae, the temperatures are high enough for the production of heavy neutron-deficient nuclei, the socalled p-nuclei. Up to now, the knowledge of the reaction rates of p-nuclei is based on theoretical parame terizations using statistical model calculations. At the bremsstrahlung facility of the superconducting electron accelerator ELBE of FZ Dresden-Rossendorf, we aim to measure the photodisintegration rates of heavy nuclei experimentally. Photoactivation measurements on the astrophysically relevant p-nuclei 92Mo and 144Sm have been performed with bremsstrahlung end-point energies from 10.0 to 16.5 MeV. First experiments on the short-lived decays following the reaction 144Sm(gamma,n) are carried out using a pneumatic delivery system for rapid transport of activated samples. The activation yields are compared with calculations using cross sections from recent Hauser-Feshbach models.
284 - A. Wagner , R. Beyer , M. Erhard 2007
Electromagnetic dipole-strength distributions up to the particle separation energies are studied for the stable even-even nuclides $^{92,94,96,98,100}$Mo in photon scattering experiments at the superconducting electron accelerator ELBE of the Forschu ngszentrum Dresden-Rossendorf. The influence of inelastic transitions to low-lying excited states has been corrected by a simulation of $gamma$ cascades using a statistical model. After corrections for branching ratios of ground-state transitions, the photon-scattering cross-sections smoothly connect to data obtained from $(gamma,n)$-reactions. With the newly determined electromagnetic dipole response of nuclei well below the particle separation energies the parametrisation of the isovector giant-dipole resonance is done with improved precision.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا