ترغب بنشر مسار تعليمي؟ اضغط هنا

The beat time {tau}_{fpt} associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound {tau}_{fpt}sim 1/{delta}{omega}. We show, both experimentally and theoretically, that two coup led active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference {delta}{omega}. Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.
116 - M. Ellis , P.R. Hobson , P. Kyberd 2010
Charged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on 350 {mu}m diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا