ترغب بنشر مسار تعليمي؟ اضغط هنا

222 - M. Sarzi , H. R. Ledo , M. Dotti 2015
Nuclear stellar discs (NSDs) can help to constrain the assembly history of their host galaxies, as long as we can assume them to be fragile structures that are disrupted during merger events. In this work we investigate the fragility of NSDs by means of N-body simulations reproducing the last phases of a galaxy encounter, when the nuclear regions of the two galaxies merge. For this, we exposed a NSD set in the gravitational potential of the bulge and supermassive black hole of a primary galaxy to the impact of the supermassive black hole from a secondary galaxy. We explored merger events of different mass ratios, from major mergers with a 1:1 mass ratio to intermediate and minor interactions with 1:5 and 1:10 ratios, while considering various impact geometries. We analyse the end results of such mergers from different viewing angles and looked for possible photometric and kinematic signatures of the presence of a disc in the remnant surface density and velocity maps, while adopting detection limits from real observations. Our simulations show that indeed NSDs are fragile against major mergers, which leave little trace of NSDs both in images and velocity maps, while signatures of a disc can be found in the majority of the intermediate to minor-merger remnants and in particular when looking at their kinematics. These results show that NSDs could allow to distinguish between these two modes of galaxy assembly, which may indeed pertain to different kinds of galaxies or galactic environments.
A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star forming galaxies. Many processes have been advocated as responsible for such a trend (also know n as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. We determine a refined star formation versus stellar mass relation in the local Universe. To this aim we use the Halpha narrow-band imaging follow-up survey (Halpha3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z=3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass M_knee that evolves with redshift as propto (1+z)^{2}. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually-classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above M_knee. We test this hypothesis using a simple but physically-motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for M_knee.
78 - M. Dotti , M. Colpi , S. Pallini 2012
Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropica lly oriented, or coherent, i.e. when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the black hole growth evolving contemporarily mass, spin modulus a and spin direction. We discover the occurrence of two regimes. An early phase (M <~ 10 million solar masses) in which rapid alignment of the black hole spin direction to the disk angular momentum in each single episode leads to erratic changes in the black hole spin orientation and at the same time to large spins (a ~ 0.8). A second phase starts when the black hole mass increases above >~ 10 million solar masses and the accretion disks carry less mass and angular momentum relatively to the hole. In the absence of a preferential direction the black holes tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the black hole spin can increase up to a ~ 1 for very massive black holes (M >~ 100 million solar masses), and its direction is stable over the many accretion cycles. We discuss the implications that our results have in the realm of the observations of black hole spin and jet orientations.
365 - M. Dotti , M. Ruszkowski 2009
Several active galactic nuclei (AGN) with multiple sets of emission lines separated by over 2000 km/s have been observed recently. These have been interpreted as being due to massive black hole (MBH) recoil following a black hole merger, MBH binaries , or chance superpositions of AGN in galaxy clusters. Moreover, a number of double-peaked AGN with velocity offsets of ~ a few 100 km/s have also been detected and interpreted as being due to the internal kinematics of the narrow line regions or MBH binary systems. Here we reexamine the superposition model. Using the Millennium Run we estimate the total number of detectable AGN pairs as a function of the emission line offset. We show that AGN pairs with high velocity line separations up to ~2000 km/s are very likely to be chance superpositions of two AGN in clusters of galaxies for reasonable assumptions about the relative fraction of AGN. No superimposed AGN pairs are predicted for velocity offsets in excess of ~3000 km/s as the required AGN fractions would violate observational constraints. The high velocity AGN pair numbers predicted here are competitive with those predicted from the models relying on MBH recoil or MBH binaries. However, the model fails to account for the largest emission line velocity offsets that require the presence of MBH binaries.
Using high resolution hydrodynamical simulations, we explore the spin evolution of massive dual black holes orbiting inside a circumnuclear disc, relic of a gas-rich galaxy merger. The black holes spiral inwards from initially eccentric co or counter -rotating coplanar orbits relative to the discs rotation, and accrete gas that is carrying a net angular momentum. As the black hole mass grows, its spin changes in strength and direction due to its gravito-magnetic coupling with the small-scale accretion disc. We find that the black hole spins loose memory of their initial orientation, as accretion torques suffice to align the spins with the angular momentum of their orbit on a short timescale (<1-2 Myr). A residual off-set in the spin direction relative to the orbital angular momentum remains, at the level of <10 degrees for the case of a cold disc, and <30 degrees for a warmer disc. Alignment in a cooler disc is more effective due to the higher coherence of the accretion flow near each black hole that reflects the large-scale coherence of the discs rotation. If the massive black holes coalesce preserving the spin directions set after formation of a Keplerian binary, the relic black hole resulting from their coalescence receives a relatively small gravitational recoil. The distribution of recoil velocities inferred from a simulated sample of massive black hole binaries has median <70 km/s much smaller than the median resulting from an isotropic distribution of spins.
In this Letter we explore the hypothesis that the quasar SDSSJ092712.65+294344.0 is hosting a massive black hole binary embedded in a circumbinary disc. The lightest, secondary black hole is active, and gas orbiting around it is responsible for the b lue-shifted broad emission lines with velocity off-set of 2650 km/s, relative to the galaxy rest frame. As the tidal interaction of the binary with the outer disc is expected to excavate a gap, the blue-shifted narrow emission lines are consistent with being emitted from the low-density inhomogeneous gas of the hollow region. From the observations we infer a binary mass ratio q ~ 0.3, a mass for the primary of M1 ~ 2 billion Msun and a semi-major axis of 0.34 pc, corresponding to an orbital period of 370 years. We use the results of cosmological merger trees to estimate the likely-hood of observing SDSSJ092712.65+294344.0 as recoiling black hole or as a binary. We find that the binary hypothesis is preferred being one hundred times more probable than the ejection hypothesis. If SDSSJ092712.65+294344.0 hosts a binary, it would be the one closest massive black hole binary system ever discovered.
61 - M. Colpi , M. Dotti 2009
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual b lack holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.
We study the orbital evolution and accretion history of massive black hole (MBH) pairs in rotationally supported circumnuclear discs up to the point where MBHs form binary systems. Our simulations have high resolution in mass and space which, for the first time, makes it feasible to follow the orbital decay of a MBH either counter- or co-rotating with respect to the circumnuclear disc. We show that a moving MBH on an initially counter-rotating orbit experiences an orbital angular momentum flip due to the gas-dynamical friction, i.e., it starts to corotate with the disc before a MBH binary forms. We stress that this effect can only be captured in very high resolution simulations. Given the extremely large number of gas particles used, the dynamical range is sufficiently large to resolve the Bondi-Hoyle-Lyttleton radii of individual MBHs. As a consequence, we are able to link the accretion processes to the orbital evolution of the MBH pairs. We predict that the accretion rate is significantly suppressed and extremely variable when the MBH is moving on a retrograde orbit. It is only after the orbital angular momentum flip has taken place that the secondary rapidly lights up at which point both MBHs can accrete near the Eddington rate for a few Myr. The separation of the double nucleus is expected to be around ~10 pc at this stage. We show that the accretion rate can be highly variable also when the MBH is co-rotating with the disc (albeit to a lesser extent) provided that its orbit is eccentric. Our results have significant consequences for the expected number of observable double AGNs at separations of <100 pc.
398 - B. Devecchi , E. Rasia , M. Dotti 2008
Anisotropic gravitational radiation from a coalescing black hole binary is known to impart recoil velocities of up to ~1000 km/s to the remnant black hole. In this context, we study the motion of a recoiling black hole inside a galaxy modelled as an Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/SPH simulations. Ejection of the black hole results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the black hole is initially released along its trail. As the black hole moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~ 100 Myr. If the recoil velocity exceeds the sound speed initially, the black hole shocks the gas in the form of a Mach cone in density near each super-sonic pericentric passage. We find that the X-ray fingerprint of a recoiling black hole can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive black holes the Mach cone and the wakes could be observed out to a few hundred of Mpc. Detection of the Mach cone is found to become of twofold importance: i) as a probe of high-velocity recoils and ii) as an assessment of the scatter of the mass-sigma relation at large black hole masses.
88 - M. Dotti , M. Colpi , F. Haardt 2008
We study the evolution of a massive black hole pair in a rotationally supported nuclear disc. The distributions of stars and gas mimic the nuclear region of a gas-rich galaxy merger remnant. Using high-resolution SPH simulations, we follow the black hole dynamics and trace the evolution of the underlying background, until the black holes form a binary. We find that the gravitational perturbation of the pair creates a core in the disc density profile, hence decreasing the gas-dynamical drag. This leads the newly formed binary to stall at a separation of ~5 pc. In the early phases of the sinking, black holes lose memory of their initial orbital eccentricity if they co-rotate with the disc, as rotation of the gaseous background promotes circularization of the black hole orbits. Circularization is efficient until the black holes bind in a binary, though in the latest stages of the simulations a residual eccentricity > 0.1 is still present. Black holes are treated as sink particles, allowing for gas accretion. We find that accretion strongly depends on the dynamical properties of the black holes, and occurs preferentially after circularization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا