ترغب بنشر مسار تعليمي؟ اضغط هنا

Aims. To derive the thermal inertia of 2008 EV$_5$, the baseline target for the Marco Polo-R mission proposal, and infer information about the size of the particles on its surface. Methods. Values of thermal inertia are obtained by fitting an asteroi d thermophysical model to NASAs Wide-field Infrared Survey Explorer (WISE) infrared data. From the constrained thermal inertia and a model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles), grain size is derived. Results. We obtain an effective diameter $D = 370 pm 6,mathrm{m}$, geometric visible albedo $p_V = 0.13 pm 0.05$ (assuming $H=20.0 pm 0.4$), and thermal inertia $Gamma = 450 pm 60$ J/m2/s(1/2)/K at the 1-$sigma$ level of significance for its retrograde spin pole solution. The regolith particles radius is $r = 6.6^{+1.3}_{-1.3}$ mm for low degrees of compaction, and $r = 12.5^{+2.7}_{-2.6}$ mm for the highest packing densities.
94 - S. Marchi 2009
It is known that near-Earth objects (NEOs) during their orbital evolution may often undergo close approaches to the Sun. Indeed it is estimated that up to ~70% of them end their orbital evolution colliding with the Sun. Starting from the present orbi tal properties, it is possible to compute the most likely past evolution for every NEO, and to trace its distance from the Sun. We find that a large fraction of the population may have experienced in the past frequent close approaches, and thus, as a consequence, a considerable Sun-driven heating, not trivially correlated to the present orbits. The detailed dynamical behaviour, the rotational and the thermal properties of NEOs determine the exact amount of the resulting heating due to the Sun. In the present paper we discuss the general features of the process, providing estimates of the surface temperature reached by NEOs during their evolution. Moreover, we investigate the effects of this process on meteor-size bodies, analyzing possible differences with the NEO population. We also discuss some possible effects of the heating which can be observed through remote sensing by ground-based surveys or space missions.
96 - P. Tanga 2008
Context: Observation of star occultations is a powerful tool to determine shapes and sizes of asteroids. This is key information necessary for studying the evolution of the asteroid belt and to calibrate indirect methods of size determination, such a s the models used to analyze thermal infrared observations. Up to now, the observation of asteroid occultations is an activity essentially secured by amateur astronomers equipped with small, portable equipments. However, the accuracy of the available ephemeris prevents accurate predictions of the occultation events for objects smaller than ~100 km. Aims: We investigate current limits in predictability and observability of asteroid occultations, and we study their possible evolution in the future, when high accuracy asteroid orbits and star positions (such as those expected from the mission Gaia of the European Space Agency) will be available. Methods: We use a simple model for asteroid ephemeris uncertainties and numerical algorithms for estimating the limits imposed by the instruments, assuming realistic CCD performances and asteroid size distribution, to estimate the expected occultation rate under different conditions. Results: We show that high accuracy ephemerides which will be available in the future will extend toward much smaller asteroids the possibility of observing asteroid occultations, greatly increasing the number of events and objects involved. A complete set of size measurements down to ~10 km main belt asteroids could be obtained in a few years, provided that a small network of ground-based 1m telescopes are devoted to occultation studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا