ترغب بنشر مسار تعليمي؟ اضغط هنا

Routinely operating since July 2012, the APACHE survey has celebrated its second birthday. While the main goal of the Project is the detection of transiting planets around a large sample of bright, nearby M dwarfs in the northern hemisphere, the APAC HE large photometric database for hundreds of different fields represents a relevant resource to search for and provide a first characterization of new variable stars. We celebrate here the conclusion of the second year of observations by reporting the discovery of 14 new variables.
XO-2 is the first confirmed wide stellar binary system where the almost twin components XO-2N and XO-2S have planets. This stimulated a detailed characterization study of the stellar and planetary components based on new observations. We collected hi gh-resolution spectra with the HARPS-N spectrograph and multi-band light curves. Spectral analysis led to an accurate determination of the stellar atmospheric parameters and characterization of the stellar activity. We collected 14 transit light curves of XO-2Nb used to improve the transit parameters. Photometry provided accurate magnitude differences between the stars and a measure of their rotation periods. The iron abundance of XO-2N was found to be +0.054 dex greater, within more than 3-sigma, than that of XO-2S. We confirm a long-term variation in the radial velocities of XO-2N, and we detected a turn-over with respect to previous measurements. We suggest the presence of a second massive companion in an outer orbit or the stellar activity cycle as possible causes of the observed acceleration. The latter explanation seems more plausible with the present dataset. We obtained an accurate value of the projected spin-orbit angle for the XO-2N system (lambda=7+/-11 degrees), and estimated the real 3-D spin-orbit angle (psi=27 +12/-27 degrees). We measured the XO-2 rotation periods, and found a value of P=41.6 days in the case of XO-2N, in excellent agreement with the predictions. The period of XO-2S appears shorter, with an ambiguity between 26 and 34.5 days that we cannot solve with the present dataset alone. XO-2N appears to be more active than the companion, and this could be due to the fact that we sampled different phases of their activity cycle, or to an interaction between XO-2N and its hot Jupiter that we could not confirm.
The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main phy sical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.
88 - C.Ulusoy , B.Ulac{s} , M. Damasso 2013
We present the first preliminary results on the analysis of ground-based time series of the {gamma} Dor star KIC 6462033 (TYC 3144-646-1, V = 10.83, P = 0.69686 d) as well as Kepler photometry in order to study pulsational behaviour in this star.{gam ma} Dor variables, which exhibit g-mode pulsations, are promising asteroseismic targets to understand their rich complexity of pulsational characteristics in detail. In order to achieve this goal, intensive and numerous multicolour and high resolution spectroscopic observations are also required, to complete space-based data aimed at the determination of their physical parameters.
36 - P. Giacobbe 2012
[ABRIDGED] In this study, we set out to a) demonstrate the sensitivity to <4 R_E transiting planets with periods of a few days around our program stars, and b) improve our knowledge of some astrophysical properties(e.g., activity, rotation) of our ta rgets by combining spectroscopic information and our differential photometric measurements. We achieve a typical nightly RMS photometric precision of ~5 mmag, with little or no dependence on the instrumentation used or on the details of the adopted methods for differential photometry. The presence of correlated (red) noise in our data degrades the precision by a factor ~1.3 with respect to a pure white noise regime. Based on a detailed stellar variability analysis, a) we detected no transit-like events; b) we determined photometric rotation periods of ~0.47 days and ~0.22 days for LHS 3445 and GJ 1167A, respectively; c) these values agree with the large projected rotational velocities (~25 km/s and ~33 km/s, respectively) inferred for both stars based on the analysis of archival spectra; d) the estimated inclinations of the stellar rotation axes for LHS 3445 and GJ 1167A are consistent with those derived using a simple spot model; e) short-term, low-amplitude flaring events were recorded for LHS 3445 and LHS 2686. Finally, based on simulations of transit signals of given period and amplitude injected in the actual (nightly reduced) photometric data for our sample, we derive a relationship between transit detection probability and phase coverage. We find that, using the BLS search algorithm, even when phase coverage approaches 100%, there is a limit to the detection probability of ~90%. Around program stars with phase coverage >50% we would have had >80% chances of detecting planets with P<1 day inducing fractional transit depths >0.5%, corresponding to minimum detectable radii in the range 1.0-2.2 R_E. [ABRIDGED]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا