ترغب بنشر مسار تعليمي؟ اضغط هنا

We present nuclear magnetic resonance (NMR) measurements on the three distinct In sites of CeCoIn$_5$ with magnetic field applied in the [100] direction. We identify the microscopic nature of the long range magnetic order (LRO) stabilized at low temp eratures in fields above 10.2 T while still in the superconducting (SC) state. We infer that the ordered moment is oriented along the $hat c$-axis and map its field evolution. The study of the field dependence of the NMR shift for the different In sites indicates that the LRO likely coexists with a modulated SC phase, possibly that predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. Furthermore, we discern a field region dominated by strong spin fluctuations where static LRO is absent and propose a revised phase diagram.
Ultrathin amorphous Bi films, patterned with a nano-honeycomb array of holes, can exhibit an insulating phase with transport dominated by the incoherent motion of Cooper pairs of electrons between localized states. Here we show that the magnetoresist ance of this Cooper pair insulator phase is positive and grows exponentially with decreasing temperature, for temperatures well below the pair formation temperature. It peaks at a field estimated to be sufficient to break the pairs and then decreases monotonically into a regime in which the film resistance assumes the temperature dependence appropriate for weakly localized single electron transport. We discuss how these results support proposals that the large MR peaks in other unpatterned, ultrathin film systems disclose a Cooper Pair Insulator phase and provide new insight into the Cooper pair localization.
We have observed multiple magnetic field driven superconductor to insulator transitions (SIT) in amorphous Bi films perforated with a nano-honeycomb (NHC) array of holes. The period of the magneto-resistance, H=H_M=h/2eS where S is the area of a unit cell of holes, indicates the field driven transitions are boson dominated. The field-dependent resistance follows R(T)=R_0(H)exp(T_0(H)/T) on both sides of the transition so that the evolution between these states is controlled by the vanishing of T_0 to0. We compare our results to the thickness driven transition in NHC films and the field driven transitions in unpatterned Bi films, other materials, and Josephson junction arrays. Our results suggest a structural source for similar behavior found in some materials and that despite the clear bosonic nature of the SITs, quasiparticle degrees of freedom likely also play an important part in the evolution of the SIT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا