ترغب بنشر مسار تعليمي؟ اضغط هنا

We have mapped the superwind/halo region of the nearby starburst galaxy M82 in the mid-infrared with $Spitzer-IRS$. The spectral regions covered include the H$_2 S(1)-S(3)$, [NeII], [NeIII] emission lines and PAH features. We estimate the total warm H$_2$ mass and the kinetic energy of the outflowing warm molecular gas to be between $M_{warm}sim5-17times10^6$ M$_{odot}$ and $E_{K}sim6-20times10^{53}$ erg. Using the ratios of the 6.2, 7.7 and 11.3 micron PAH features in the IRS spectra, we are able to estimate the average size and ionization state of the small grains in the superwind. There are large variations in the PAH flux ratios throughout the outflow. The 11.3/7.7 and the 6.2/7.7 PAH ratios both vary by more than a factor of five across the wind region. The Northern part of the wind has a significant population of PAHs with smaller 6.2/7.7 ratios than either the starburst disk or the Southern wind, indicating that on average, PAH emitters are larger and more ionized. The warm molecular gas to PAH flux ratios (H$_2/PAH$) are enhanced in the outflow by factors of 10-100 as compared to the starburst disk. This enhancement in the H$_2/PAH$ ratio does not seem to follow the ionization of the atomic gas (as measured with the [NeIII]/[NeII] line flux ratio) in the outflow. This suggests that much of the warm H$_2$ in the outflow is excited by shocks. The observed H$_2$ line intensities can be reproduced with low velocity shocks ($v < 40$ km s$^{-1}$) driven into moderately dense molecular gas ($10^2 <n_H < 10^4$ cm$^{-3}$) entrained in the outflow.
136 - M. D. Lehnert 2015
The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M_star) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypoth esize that the relation and its evolution is regulated by the increase in the stellar and gas mass surface density in galaxies with redshift, which is itself governed by the angular momentum of the accreted gas, the amount of available gas, and by self-regulation of star formation. With our model, we can reproduce the specific SFR-M_star relations at z~1-2 by assuming gas fractions and gas mass surface densities similar to those observed for z=1-2 galaxies. We further argue that it is the increasing angular momentum with cosmic time that causes a decrease in the surface density of accreted gas. The gas mass surface densities in galaxies are controlled by the centrifugal support (i.e., angular momentum), and the sSFR is predicted to increase as, sSFR(z)=(1+z)^3/t_H0, as observed (where t_H0 is the Hubble time and no free parameters are necessary). At z>~2, we argue that star formation is self-regulated by high pressures generated by the intense star formation itself. The star formation intensity must be high enough to either balance the hydrostatic pressure (a rather extreme assumption) or to generate high turbulent pressure in the molecular medium which maintains galaxies near the line of instability (i.e. Toomre Q~1). The most important factor is the increase in stellar and gas mass surface density with redshift, which allows distant galaxies to maintain high levels of sSFR. Without a strong feedback from massive stars, such galaxies would likely reach very high sSFR levels, have high star formation efficiencies, and because strong feedback drives outflows, ultimately have an excess of stellar baryons (abridged).
We detect bright [CII]158$mu$m line emission from the radio galaxy 3C 326N at z=0.09, which shows weak star formation ($SFR<0.07$M$_{odot}$~yr$^{-1}$) despite having strong H$_2$ line emission and $2times 10^9$M$_{odot}$ of molecular gas. The [CII] l ine is twice as strong as the 0-0S(1) 17$mu$m H$_2$ line, and both lines are much in excess what is expected from UV heating. We combine infrared Spitzer and Herschel data with gas and dust modeling to infer the gas physical conditions. The [CII] line traces 30 to 50% of the molecular gas mass, which is warm (70<T<100K) and at moderate densities $700<n_{H}<3000$cm$^{-3}$. The [CII] line is broad with a blue-shifted wing, and likely to be shaped by a combination of rotation, outflowing gas, and turbulence. It matches the near-infrared H$_2$ and the Na D optical absorption lines. If the wing is interpreted as an outflow, the mass loss rate would be larger than 20M$_{odot}$/yr, and the depletion timescale shorter than the orbital timescale ($10^8$yr). These outflow rates may be over-estimated because the stochastic injection of turbulence on galactic scales can contribute to the skewness of the line profile and mimic outflowing gas. We argue that the dissipation of turbulence is the main heating process of this gas. Cosmic rays can also contribute to the heating but they require an average gas density larger than the observational constraints. We show that strong turbulent support maintains a high gas vertical scale height (0.3-4kpc) in the disk and can inhibit the formation of gravitationally-bound structures at all scales, offering a natural explanation for the weakness of star formation in 3C 326N. To conclude, the bright [CII] line indicates that strong AGN jet-driven turbulence may play a key role in enhancing the amount of molecular gas (positive feedback) but yet can prevent star formation on galactic scales (negative feedback).
(abridged) We have analyzed the properties of the rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z=1.3 to 2.7 observed with SINFONI on the ESO-VLT. We find large velocity dispersions in the lines, sigma=30-250 km/s. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (log P/k (K/cm^3)>~6-7). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general ISM. Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q~1. For a star formation efficiency of 3%, only 5-15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.
We present results of a search for bright Lyman break galaxies at 1.5<=z<=2.5 in the GOODS-S field using a NUV-dropout technique in combination with color-selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to B M/BX- and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find about 20% of our LBG candidates are comparable to infrared luminous LBGs or sub-millimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z~2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z~2 is therefore more directly comparable to the populations found at z~3, which does contain a red fraction.
(abridged) We have analyzed the properties of the Na D doublet lines in a large sample of 691 radio galaxies using the Sloan Digital Sky Survey (SDSS). These radio galaxies are resolved in the FIRST survey, have redshifts less that 0.2 and radio flux densities at 1.4 GHz higher than 40 mJy. Approximately 1/3 of the sources show a significant excess (above that contributed by their stellar populations) of Na D absorption that can be robustly fitted with two Voigt profiles representing the Na D doublet. A further 1/6 of the sources show residual absorption, for which the fits were not well constrained though while ~50% of the sample show no significant residual absorption. The residual absorption is modestly blueshifted, typically by ~50 km/s, but the velocity dispersions are high, generally ~500 km/s. Assuming that the size of the absorbing region is consistent with ~1 kpc for dust lanes in a sample of generally more powerful radio sources and a continuous constant velocity flow (continuity equation), we estimate mass and energy outflow rates of about 10 Msun/yr and few x e42 erg/s. These rates are consistent with those in the literature based on HI absorption line observations of radio galaxies. The energy required to power these outflows is on the order of 1-10% of the jet mechanical power and we conclude that the radio jet alone is sufficient. The mass and energy outflow rates are consistent with what is needed to heat/expel the mass returned by the stellar populations as well as the likely amount of gas from a cooling halo. This suggests that radio-loud AGN play a key role in energizing the outflow/heating phase of the feedback cycle. The deposition of the jet mechanical energy could be important for explaining the ensemble characteristics of massive early type galaxies in the local universe.
We present an analysis of the kinematics and excitation of the warm ionized gas in two obscured, powerful quasars at z>=3.5 from the SWIRE survey, SWIRE J022513.90-043419.9 and SWIRE J022550.67-042142, based on imaging spectroscopy on the VLT. Line r atios in both targets are consistent with luminous narrow-line regions of AGN. SWIRE J022550.67-042142 has very broad (FWHM=2000 km/s), spatially compact [OIII] line emission. SWIRE J022513.90-043419.9 is spatially resolved, has complex line profiles of H-beta and [OIII], including broad wings with blueshifts of up to -1500 km/s relative to the narrow [OIII]5007 component, and widths of up to FWHM=5000 km/s. Estimating the systemic redshift from the narrow H-beta line, as is standard for AGN host galaxies, implies that a significant fraction of the molecular gas is blueshifted by up to ~ -1000 km/s relative to the systemic velocity. Thus the molecular gas could be participating in the outflow. Significant fractions of the ionized and molecular gas reach velocities greater than the escape velocity. We compare empirical and modeling constraints for different energy injection mechanisms, such as merging, star formation, and momentum-driven AGN winds. We argue that the radio source is the most likely culprit, in spite of the sources rather modest radio power of 10^25 W/Hz. Such a radio power is not uncommon for intense starburst galaxies at z~2. We discuss these results in light of the co-evolution of AGN and their host galaxy.
It has been known since many decades that galaxy interactions can induce star formation (hereafter SF) enhancements and that one of the driving mechanisms of this enhancement is related to gas inflows into the central galaxy regions, induced by asymm etries in the stellar component, like bars. In the last years many evidences have been accumulating, showing that interacting pairs have central gas-phase metallicities lower than those of field galaxies, by {sim} 0.2-0.3 dex on average. These diluted ISM metallicities have been explained as the result of inflows of metal-poor gas from the outer disk to the galaxy central regions. A number of questions arises: Whats the timing and the duration of this dilution? How and when does the SF induced by the gas inflow enrich the circumnuclear gas with re-processed material? Is there any correlation between the timing and strength of the dilution and the timing and intensity of the SF? By means of Tree-SPH simulations of galaxy major interactions, we have studied the effect that gas inflows have on the ISM dilution, and the effect that the induced SF has, subsequently, in re-enriching the nuclear gas. In this contribution, we present the main results of this study.
We study the distribution of orbital eccentricities of stars in thick disks generated by the heating of a pre-existing thin stellar disk through a minor merger (mass ratio 1:10), using N-body/SPH numerical simulations of interactions that span a rang e of gas fractions in the primary disk and initial orbital configurations. The resulting eccentricity distributions have an approximately triangular shape, with a peak at 0.2-0.35, and a relatively smooth decline towards higher values. Stars originally in the satellite galaxy tend to have higher eccentricities (on average from e = 0.45 to e = 0.75), which is in general agreement with the models of Sales and collaborators, although in detail we find fewer stars with extreme values and no evidence of their secondary peak around e = 0.8. The absence of this high-eccentricity feature results in a distribution that qualitatively matches the observations. Moreover, the increase in the orbital eccentricities of stars in the solar neighborhood with vertical distance from the Galactic mid-plane recently found by Diericxk and collaborators can be qualitatively reproduced by our models, but only if the satellite is accreted onto a direct orbit. We thus speculate that if minor mergers were the dominant means of formating the Milky Way thick disk, the primary mechanism should be merging with satellite(s) on direct orbits.
167 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا