ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of 32$^{primeprime}$ in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/d$Omega$ test reveals that a redshift range of $0.2<z<0.5$ in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible departures to be within 30% in mass. Abridged.
62 - C. M. Cooper 2013
The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-$beta$ phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets which create an axisymmetric multicusp that contains $sim$14 m$^{3}$ of nearly magnetic field free plasma that is well confined and highly ionized $(>50%)$. At present, 8 lanthanum hexaboride (LaB$_6$) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating (ECH) power is planned for additional electron heating. The LaB$_6$ cathodes are positioned in the magnetized edge to drive toroidal rotation through ${bf J}times{bf B}$ torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number $Rm > 1000$, and an adjustable fluid Reynolds number $10< Re <1000$, in the regime where the kinetic energy of the flow exceeds the magnetic energy ($M_A^2=($v$/$v$_A)^2 > 1$). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا