ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we analyse the spectra of D-type SS H1-36 within a colliding-wind scenario. We aim to analyse the properties of this object taking into account the observational data along the whole electromagnetic spectrum, in order to derive a self-c onsistent picture able to interpret the nature of the system as a whole. After constraining the relative physical conditions by modelling more than 40 emission lines from radio to UV, we are able to explain the continuum spectral energy distribution by taking into account all the emitting contributions arising from both the stars, the dust shells and the gaseous nebulae. A comprehensive model of the radio spectra allows to reproduce the different slopes of the radio profile and the turnover frequency, as well as the different size of the observed shocked envelope at different frequencies in the light of the different contributions from the expanding and reverse nebulae. The IR continuum unveils the presence of two dust shells with different radii and temperatures, which might be a distinctive feature of D-type symbiotic systems as a class of objects. The broad profiles of IR lines direct us to investigate whether an X-ray jet may be present. This insight leads us to indicate H1-36 as a promising X-ray target and to encourage observations and studies which consistently take into account the complex nature of symbiotic stars throughout the whole electromagnetic spectrum.
We present a comprehensive and self-consistent modelling of the D type symbiotic star (SS) HD330036 from radio to UV. Within a colliding-wind scenario, we analyse the continuum, line and dust spectra by means of SUMA, a code that simulates the physic al conditions of an emitting gaseous cloud under the coupled effect of ionization from an external radiation source and shocks. We find that the UV lines are emitted from high density gas between the stars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards the system. As regards with the continuum SED, three shells are identified in the IR, at 850K, 320 K and 200 K with radii r = 2.8 10^13 cm, 4 10^14$ cm, and 10^15 cm, respectively, adopting a distance to Earth d=2.3 kpc: interestingly, all these shells appear to be circumbinary. The analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored into the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism in activating the annealing and the consequent crystallization processes. We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models which accounts for the coupled effect of the photoionizing flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا