ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from Aug 2013 through Feb 2014. DES-SN is a search for transients in w hich ten 3-deg^2 fields are repeatedly observed in the g,r,i,z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernova (SN Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are 130 detections per deg^2 per observation in each band, of which only 25% are artifacts. Of the 7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least 2 separate nights, Monte Carlo simulations predict that 27% are expected to be supernova. Another 30% of the transients are artifacts, and most of the remaining transients are AGN and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies, and to understand the DiffImg performance. The DiffImg efficiency measured with fake SNe agrees well with expectations from a Monte Carlo simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 shallow fields with single-epoch 50% completeness depth 23.5, the SN Ia efficiency falls to 1/2 at redshift z 0.7, in our 2 deep fields with mag-depth 24.5, the efficiency falls to 1/2 at z 1.1.
We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude $M_B = -19.8$, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 AA) light curve out to 45 days past $B$-band maximum light. We estimate that LSQ12gdj produced $0.96 pm 0.07$ $M_odot$ of $^{56}$Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdjs luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius $< 10^{13}$ cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.
SN 2009dc shares similarities with normal Type Ia supernovae, but is clearly overluminous, with a (pseudo-bolometric) peak luminosity of log(L) = 43.47 [erg/s]. Its light curves decline slowly over half a year after maximum light, and the early-time near-IR light curves show secondary maxima, although the minima between the first and second peaks are not very pronounced. Bluer bands exhibit an enhanced fading after ~200 d, which might be caused by dust formation or an unexpectedly early IR catastrophe. The spectra of SN 2009dc are dominated by intermediate-mass elements and unburned material at early times, and by iron-group elements at late phases. Strong C II lines are present until ~2 weeks past maximum, which is unprecedented in thermonuclear SNe. The ejecta velocities are significantly lower than in normal and even subluminous SNe Ia. No signatures of CSM interaction are found in the spectra. Assuming that the light curves are powered by radioactive decay, analytic modelling suggests that SN 2009dc produced ~1.8 solar masses of 56Ni assuming the smallest possible rise time of 22 d. Together with a derived total ejecta mass of ~2.8 solar masses, this confirms that SN 2009dc is a member of the class of possible super-Chandrasekhar-mass SNe Ia similar to SNe 2003fg, 2006gz and 2007if. A study of the hosts of SN 2009dc and other superluminous SNe Ia reveals a tendency of these SNe to explode in low-mass galaxies. A low metallicity of the progenitor may therefore be an important pre-requisite for producing superluminous SNe Ia. We discuss a number of explosion scenarios, ranging from super-Chandrasekhar-mass white-dwarf progenitors over dynamical white-dwarf mergers and Type I 1/2 SNe to a core-collapse origin of the explosion. None of the models seem capable of explaining all properties of SN 2009dc, so that the true nature of this SN and its peers remains nebulous.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا