ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov- chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods.
A new framework for evaluating hydrodynamic models of relativistic heavy ion collisions has been developed. This framework, a Comprehesive Heavy Ion Model Evaluation and Reporting Algorithm (CHIMERA) has been implemented by augmenting UVH 2+1D viscou s hydrodynamic model with eccentricity fluctuations, pre-equilibrium flow, and the Ultra-relativistic Quantum Molecular Dynamic (UrQMD) hadronic cascade. A range of initial temperatures and shear viscosity to entropy ratios were evaluated for four initial profiles, $N_{part}$ and $N_{coll}$ scaling with and without pre-equilibrium flow. The model results were compared to pion spectra, elliptic flow, and femtoscopic radii from 200 GeV Au+Au collisions for the 0--20% centrality range.Two sets of initial density profiles, $N_{part}$ scaling with pre-equilibrium flow and $N_{coll}$ scaling without were shown to provide a consistent description of all three measurements.
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeV
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا