ترغب بنشر مسار تعليمي؟ اضغط هنا

We apply the methods of homology and K-theory for branes wrapping spaces stratified fibered over hyperbolic orbifolds. In addition, we discuss the algebraic K-theory of any discrete co-compact Lie group in terms of appropriate homology and Atiyah-Hir zebruch type spectral sequence with its non-trivial lift to K-homology. We emphasize the fact that the physical D-branes properties are completely transparent within the mathematical framework of K-theory. We derive criteria for D-brane stability in the case of strongly virtually negatively curved groups. We show that branes wrapping spaces stratified fibered over hyperbolic orbifolds carry charge structure and change the additive structural properties in K-homology.
We discuss the prospects of searching for the neutral Higgs bosons of the triplet model in central exclusive production at the LHC. A detailed Monte Carlo analysis is presented for six benchmark scenarios for the Higgs boson, $H_1^{0}$, these cover $ m_{H_1^0}=$~120, 150 GeV and doublet-triplet mixing of $c_H=$~0.2, 0.5 or 0.8. We find that, for appropriate values of $c_H$, an excellent Higgs mass measurement is possible for the neutral Higgs in the triplet model, and discuss how to distinguish the triplet model Higgs boson from the Higgs boson of the Standard Model.
The concept of a noncommutative field is formulated based on the interplay between twisted Poincare symmetry and residual symmetry of the Lorentz group. Various general dynamical results supporting this construction, such as the light-wedge causality condition and the integrability condition for Tomonaga-Schwinger equation, are presented. Based on this analysis, the claim of the identity between commutative QFT and noncommutative QFT with twisted Poincare symmetry is refuted.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا