ترغب بنشر مسار تعليمي؟ اضغط هنا

Future experiments of nuclear and particle physics are moving towards the high luminosity regime, in order to access suppressed processes like rare B decays or exotic charmonium resonances. In this scenario, high rate capability is a key requirement for electronics instrumentation, together with excellent timing resolution for precise event reconstruction. The development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging. A current trend in R&D is towards multipurpose FEE which can be easily adapted to a great variety of detectors, without impairing the required high performance. We report on high-precision timing solutions which utilise high-bandwidth preamplifiers and fast discriminators providing Time-over-Threshold information, which can be used for charge measurements or walk corrections thus improving the obtainable timing resolution. The output signal are LVDS and can be directly fed into a multi-hit TDC readout. The performance of the electronics was investigated for single photon signals, typical for imaging Cherenkov detectors. The opposite condition of light signals arising from plastic scintillators, was also studied. High counting rates per channel of several MHz were achieved, and a timing resolution of better than 100 ps could be obtained in a test experiment using the full readout chain.
As part of a reanalysis of Galactic Asymptotic Giant Branch stars (hereafter AGB stars) at infrared wavelengths, we discuss here two samples (the first of carbon-rich stars, the second of S stars) for which photometry in the near- and mid-IR and dist ance estimates are available. Whenever possible we searched also for mass-loss rates. The observed spectral energy distributions extended in all cases up to 20 $mu$m and for the best-observed sources up to 45 $mu$m. The wide wavelength coverage allows us to obtain reliable bolometric corrections, and hence bolometric magnitudes. We show that mid-IR fluxes are crucial for estimating bolometric magnitudes for stars with dusty envelopes and that the so-called luminosity problem of C stars (i.e. the suggestion that they are less luminous than predicted by models) does not appear to exist.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا