ترغب بنشر مسار تعليمي؟ اضغط هنا

The existence of pulsations in HgMn stars is still being debated. To provide the first unambiguous observational detection of pulsations in this class of chemically peculiar objects, the bright star HD 45975 was monitored for nearly two months by the CoRoT satellite. Independent analyses of the light curve provides evidence of monoperiodic variations with a frequency of 0.7572 c/d and a peak-to-peak amplitude of ~2800 ppm. Multisite, ground-based spectroscopic observations overlapping the CoRoT observations show the star to be a long-period, single-lined binary. Furthermore, with the notable exception of mercury, they reveal the same periodicity as in photometry in the line moments of chemical species exhibiting strong overabundances (e.g., Mn and Y). In contrast, lines of other elements do not show significant variations. As found in other HgMn stars, the pattern of variability consists in an absorption bump moving redwards across the line profiles. We argue that the photometric and spectroscopic changes are more consistent with an interpretation in terms of rotational modulation of spots at the stellar surface. In this framework, the existence of pulsations producing photometric variations above the ~50 ppm level is unlikely in HD 45975. This provides strong constraints on the excitation/damping of pulsation modes in this HgMn star.
88 - S. Saesen , M. Briquet , C. Aerts 2013
Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensemble s of stars in a young open cluster, which all have similar age, distance and chemical composition. We present an observational asteroseismology study based on the discovery of numerous multi-periodic and mono-periodic B-stars in the open cluster NGC 884. We describe a thorough investigation of the pulsational properties of all B-type stars in the cluster. Overall, our detailed frequency analysis resulted in 115 detected frequencies in 65 stars. We found 36 mono-periodic, 16 bi-periodic, 10 tri-periodic, and 2 quadru-periodic stars and one star with 9 independent frequencies. We also derived the amplitudes and phases of all detected frequencies in the U, B, V and I filter, if available. We achieved unambiguous identifications of the mode degree for twelve of the detected frequencies in nine of the pulsators. Imposing the identified degrees and measured frequencies of the radial, dipole and quadrupole modes of five pulsators led to a seismic cluster age estimate of log(age/yr) =7.12-7.28 from a comparison with stellar models. Our study is a proof-of-concept for and illustrates the current status of ensemble asteroseismology of a young open cluster.
139 - M. Briquet , C. Neiner , C. Aerts 2012
We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1 }) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M in [8.2,9.6] M_o) and central hydrogen abundance (X_c in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.
Context. OB stars are important building blocks of the Universe, but we have only a limited sample of them well understood enough from an asteroseismological point of view to provide feedback on the current evolutionary models. Our study adds one spe cial case to this sample, with more observational constraints than for most of these stars. Aims. Our goal is to analyse and interpret the pulsational behaviour of the B3 IV star HD 43317 using the CoRoT light curve along with the ground-based spectroscopy gathered by the Harps instrument. This way we continue our efforts to map the Beta Cep and SPB instability strips. Methods. We used different techniques to reveal the abundances and fundamental stellar parameters from the newly-obtained high-resolution spectra. We used various time-series analysis tools to explore the nature of variations present in the light curve. We calculated the moments and used the pixel-by-pixel method to look for line profile variations in the high-resolution spectra. Results. We find that HD 43317 is a single fast rotator (v_rot ~ 50% v_crit) and hybrid SPB/Beta Cep-type pulsator with Solar metal abundances. We interpret the variations in photometry and spectroscopy as a result of rotational modulation connected to surface inhomogeneities, combined with the presence of both g and p mode pulsations. We detect a series of ten consecutive frequencies with an almost constant period spacing of 6339 s as well as a second shorter sequence consisting of seven frequencies with a spacing of 6380 s. The dominant frequencies fall in the regime of gravito-inertial modes.
Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these stars (HD 46202 and the binaries HD 46149 and P lasketts star). These cover both opacity-driven modes and solar-like stochastic oscillations, both of importance to the asteroseismological modelling of O stars. Additional effects can be seen in the CoRoT light curves, such as binarity and rotational modulation. Some of the hottest O-type stars (HD 46223, HD 46150 and HD 46966) are dominated by the presence of red-noise: we speculate that this is related to a sub-surface convection zone.
50 - S. Hubrig , I. Ilyin , M. Briquet 2011
Only for very few beta Cephei stars has the behaviour of the magnetic field been studied over the rotation cycle. During the past two years we have obtained multi-epoch polarimetric spectra of the beta Cephei star V1449 Aql with SOFIN at the Nordic O ptical Telescope to search for a rotation period and to constrain the geometry of the magnetic field. The mean longitudinal magnetic field is measured at 13 different epochs. The new measurements, together with the previous FORS1 measurements, have been used for the frequency analysis and the characterization of the magnetic field. V1449 Aql so far possesses the strongest longitudinal magnetic field of up to 700G among the beta Cephei stars. The resulting periodogram displays three dominant peaks with the highest peak at f=0.0720d^-1 corresponding to a period P=13.893d. The magnetic field geometry can likely be described by a centred dipole with a polar magnetic field strength B_d around 3kG and an inclination angle beta of the magnetic axis to the rotation axis of 76+-4deg. As of today, the strongest longitudinal magnetic fields are detected in the beta Cephei stars V1449 Aql and xi^1 CMa with large radial velocity amplitudes. Their peak-to-peak amplitudes reach ~90km/s and ~33km/s, respectively. Concluding, we briefly discuss the position of the currently known eight magnetic beta Cephei and candidate beta Cephei stars in the Hertzsprung-Russell (H-R) diagram.
OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Our goal is to analyse and interpret t he behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission, and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the CORALIE and HARPS instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the Beta Cep instability strip. We compare the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We match the results with evolutionary tracks to estimate stellar parameters. We use various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations are carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. We find that HD 51756 is a wide binary with both a slow (v sin i approx 28 km s^-1) and a fast (v sin i approx 170 km s^-1) early-B rotator whose atmospheric parameters are similar (T_eff approx 30000 K and log g approx 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star.
The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for aste roseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
The known beta Cephei star HD 180642 was observed by the CoRoT satellite in 2007. From the very high-precision light curve, its pulsation frequency spectrum could be derived for the first time (Degroote and collaborators). In this paper, we obtain ad ditional constraints for forthcoming asteroseismic modeling of the target. Our results are based on both extensive ground-based multicolour photometry and high-resolution spectroscopy. We determine T_eff = 24 500+-1000 K and log g = 3.45+-0.15 dex from spectroscopy. The derived chemical abundances are consistent with those for B stars in the solar neighbourhood, except for a mild nitrogen excess. A metallicity Z = 0.0099+-0.0016 is obtained. Three modes are detected in photometry. The degree l is unambiguously identified for two of them: l = 0 and l = 3 for the frequencies 5.48694 1/d and 0.30818 1/d, respectively. The radial mode is non-linear and highly dominant with an amplitude in the U-filter about 15 times larger than the strongest of the other modes. For the third frequency of 7.36673 1/d found in photometry, two possibilities remain: l = 0 or 3. In the radial velocities, the dominant radial mode presents a so-called stillstand but no clear evidence of the existence of shocks is observed. Four low-amplitude modes are found in spectroscopy and one of them, with frequency 8.4079 1/d, is identified as (l,m)=(3,2). Based on this mode identification, we finally deduce an equatorial rotational velocity of 38+-15 km/s.
53 - M. Desmet , M. Briquet , A. Thoul 2009
We present the results of a spectroscopic multisite campaign for the beta Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with 8 different telescopes in a time span of 11 months. In add ition we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2) = (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 = 5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our seismic modelling shows that f2 is likely the radial first overtone and that the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale heights.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا