ترغب بنشر مسار تعليمي؟ اضغط هنا

196 - P. Padovani 2015
We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sam ple while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.
79 - P. Padovani 2014
We present our very recent results on the sub-mJy radio source populations at 1.4 GHz based on the Extended Chandra Deep Field South VLA survey, which reaches ~ 30 {mu}Jy, with details on their number counts, evolution, and luminosity functions. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate and declining radio-loud AGN. While the well-known flattening of the radio number counts below 1 mJy is mostly due to star-forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-mJy sky. Our results shed also light on a fifty-year-old issue, namely radio emission from radio-quiet AGN, and suggest that it is closely related to star formation, at least at z ~ 1.5 - 2. The implications of our findings for future, deeper radio surveys, including those with the Square Kilometre Array, are also discussed. One of the main messages, especially to non-radio astronomers, is that radio surveys are reaching such faint limits that, while previously they were mainly useful for radio quasars and radio galaxies, they are now detecting mostly star-forming galaxies and radio-quiet AGN, i.e., the bulk of the extragalactic sources studied in the infrared, optical, and X-ray bands.
Deep radio observations at 1.4GHz for the Extended Chandra Deep Field South were performed in June through September of 2007 and presented in a first data release (Miller et al. 2008). The survey was made using six separate pointings of the Very Larg e Array (VLA) with over 40 hours of observation per pointing. In the current paper, we improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree and reaches a best rms sensitivity of 6 uJy and has a typical sensitivity of 7.4 uJy per 2.8 by 1.6 beam. We also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise along with information on source sizes and relevant pointing data. We discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications (Bonzini et al. 2012) are used to identify 17 likely multiple-component sources and arrive at a catalog of 883 radio sources, which is roughly double the number of sources contained in the first data release.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا