ترغب بنشر مسار تعليمي؟ اضغط هنا

105 - M. Bomben 2013
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology i s a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, a complete overview of the electrical characterization of several irradiated samples will be discussed. Some comments about detector modules being assembled will be made and eventually some plans will be outlined.
129 - M. Bomben 2013
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology i s a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors simulation results, a complete overview of the electrical characterization of the produced devices will be given.
In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers , given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FTK.
79 - M. Bomben 2012
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and c ost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.
85 - M. Bomben 2012
The development of n-on-p edgeless planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing featu re of the devices is the reduced dead area at the edge, achieved by adopting the active edge technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of $1 times 10^{15} {rm n_{eq}}/{rm cm}^2$ comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb$^{-1}$) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.
The foreseen luminosity upgrade for the LHC (a factor of 5-10 more in peak luminosity by 2021) poses serious constraints on the technology for the ATLAS tracker in this High Luminosity era (HL-LHC). In fact, such luminosity increase leads to increase d occupancy and radiation damage of the tracking detectors. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project was established comprising 17 institutes and more than 80 scientists. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edge designs to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. In the following I will present results from the group, concerning mainly irradiated-devices performance, together with studies for new sensors, including detailed simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا