ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N <= 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling
132 - B. Bally , B. Avez , M. Bender 2014
Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a Generator Coordinate Method based on angular-momen tum and particle-number projected triaxially deformed Hatree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the Generator Coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to 25Mg illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
We describe a new version of the EV8 code that solves the nuclear Skyrme-Hartree-Fock+BCS problem using a 3-dimensional cartesian mesh. Several new features have been implemented with respect to the earlier version published in 2005. In particular, t he numerical accuracy has been improved for a given mesh size by (i) implementing a new solver to determine the Coulomb potential for protons (ii) implementing a more precise method to calculate the derivatives on a mesh that had already been implemented earlier in our beyond-mean-field codes. The code has been made very flexible to enable the use of a large variety of Skyrme energy density functionals that have been introduced in the last years. Finally, the treatment of the constraints that can be introduced in the mean-field equations has been improved. The code Ev8 is today the tool of choice to study the variation of the energy of a nucleus from its ground state to very elongated or triaxial deformations with a well-controlled accuracy.
It is shown that if the C operator for a PT-symmetric Hamiltonian with simple eigenvalues is not unique, then it is unbounded. Apart from the special cases of finite-matrix Hamiltonians and Hamiltonians generated by differential expressions with PT-s ymmetric point interactions, the usual situation is that the C operator is unbounded. The fact that the C operator is unbounded is significant because, while there is a formal equivalence between a PT-symmetric Hamiltonian and a conventionally Hermitian Hamiltonian in the sense that the two Hamiltonians are isospectral, the Hilbert spaces are inequivalent. This is so because the mapping from one Hilbert space to the other is unbounded. This shows that PT-symmetric quantum theories are mathematically distinct from conventional Hermitian quantum theories.
This paper examines the complex trajectories of a classical particle in the potential V(x)=-cos(x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that $x(t+T)=x(t) pm2 pi$. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.
An expected source of gravitational waves for future detectors in space are the inspirals of small compact objects into much more massive black holes. These sources have the potential to provide a wealth of information about astronomy and fundamental physics. On short timescales the orbit of the small object is approximately geodesic. Generic geodesics for a Kerr black hole spacetime have a complete set of integrals and can be characterized by three frequencies of the motion. Over the course of an inspiral, a typical system will pass through resonances where two of these frequencies become commensurate. The effect of the resonance will be to alter significantly the rate of inspiral for the duration of the resonance. Understanding the impact of these resonances on gravitational wave phasing is important to detect and exploit these signals for astrophysics and fundamental physics. Two differential equations that might describe the passage of an inspiral through such a resonance are investigated. These differ depending on whether it is the phase or the frequency components of a Fourier expansion of the motion that are taken to be continuous through the resonance. Asymptotic and hyperasymptotic analysis are used to find the late-time analytic behavior of the solution for a system that has passed through a resonance. Linearly growing (weak resonances) or linearly decaying (strong resonances) solutions are found depending on the strength of the resonance. In the weak-resonance case, frequency resonances leave an imprint (a resonant memory) on the gravitational frequency evolution. The transition between weak and strong resonances is characterized by a square-root singularity, and as one approaches this transition from above, the solutions to the frequency resonance equation bunch up into families exponentially fast.
75 - B. Bally , B. Avez , M. Bender 2011
In these proceedings, we report first results for particle-number and angular-momentum projection of self-consistently blocked triaxial one-quasiparticle HFB states for the description of odd-A nuclei in the context of regularized multi-reference ene rgy density functionals, using the entire model space of occupied single-particle states. The SIII parameterization of the Skyrme energy functional and a volume-type pairing interaction are used.
This paper revisits earlier work on complex classical mechanics in which it was argued that when the energy of a classical particle in an analytic potential is real, the particle trajectories are closed and periodic, but that when the energy is compl ex, the classical trajectories are open. Here it is shown that there is a discrete set of eigencurves in the complex-energy plane for which the particle trajectories are closed and periodic.
Suppose that a system is known to be in one of two quantum states, $|psi_1 > $ or $|psi_2 >$. If these states are not orthogonal, then in conventional quantum mechanics it is impossible with one measurement to determine with certainty which state the system is in. However, because a non-Hermitian PT-symmetric Hamiltonian determines the inner product that is appropriate for the Hilbert space of physical states, it is always possible to choose this inner product so that the two states $|psi_1 > $ and $|psi_2 > $ are orthogonal. Thus, quantum state discrimination can, in principle, be achieved with a single measurement.
We discuss the origin of pathological behaviors that have been recently identified in particle-number-restoration calculations performed within the nuclear energy density functional framework. A regularization method that removes the problematic term s from the multi-reference energy density functional and which applies (i) to any symmetry restoration- and/or generator-coordinate-method-based configuration mixing calculation and (ii) to energy density functionals depending only on integer powers of the density matrices, was proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] and implemented for particle-number restoration calculations in [M. Bender, T. Duguet, D. Lacroix, arXiv:0809.2045]. In the present paper, we address the viability of non-integer powers of the density matrices in the nuclear energy density functional. Our discussion builds upon the analysis already carried out in [J. Dobaczewski emph{et al.}, Phys. Rev. C textbf{76}, 054315 (2007)]. First, we propose to reduce the pathological nature of terms depending on a non-integer power of the density matrices by regularizing the fraction that relates to the integer part of the exponent using the method proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]. Then, we discuss the spurious features brought about by the remaining fractional power. Finally, we conclude that non-integer powers of the density matrices are not viable and should be avoided in the first place when constructing nuclear energy density functionals that are eventually meant to be used in multi-reference calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا