ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - M. Baldo 2015
The Energy Density Functional theory is one of the most used methods developed in nuclear structure. It is based on the assumption that the energy of the ground state is a functional only of the density profile. The method is extremely successful wit hin the effective force approach, noticeably the Skyrme or Gogny forces, in reproducing the nuclear binding energies and other bulk properties along the whole mass table. Although the Density Functional is in this case represented formally as the Hartree-Fock mean field of an effective force, the corresponding single-particle states in general do not reproduce the phenomenology particularly well. To overcome this difficulty, a strategy has been developed where the effective force is adjusted to reproduce directly the single particle energies, trying to keep the ground state energy sufficiently well reproduced. An alternative route, that has been developed along several years, for solving this problem is to introduce the mean field fluctuations, as represented by the collective vibrations of the nuclear system, and their influence on the single particle dynamics and structure. This is the basis of the particle-vibration coupling model. In this paper we present a formal theory of the particle-vibration coupling model based on the Green s function method. The theory extends to realistic effective forces the macroscopic particle-vibration coupling models and the (microscopic) Nuclear Field Theory. It is formalized within the functional derivative approach to many-body theory. An expansion in diagrams is devised for the single particle self-energy and the phonon propagator. Critical aspects of the particle-vibration coupling model are analysed in general. Applications at the lowest order of the expansion are presented and discussed.
We explore the relevance of confinement in quark matter models for the possible quark core of neutron stars. For the quark phase, we adopt the equation of state (EoS) derived with the Field Correlator Method, extended to the zero temperature limit. F or the hadronic phase, we use the microscopic Brueckner-Hartree-Fock many-body theory. We find that the currently adopted value of the gluon condensate $G_2 simeq 0.006-0.007 rm {GeV^4}$, which gives a critical temperature $T_c simeq 170 rm MeV$, produces maximum masses which are only marginally consistent with the observational limit, while larger masses are possible if the gluon condensate is increased.
64 - S.S. Pankratov 2008
Ab initio gap equation for ^1S_0 pairing in a nuclear slab is solved for the Argonne v18 NN-potential. The gap function is compared in detail with the one found previously for the separable form of the Paris potential. The difference between the two gaps turned out to be about 10%. Dependence of the gap on the chemical potential mu is analyzed.
94 - M. Baldo , C. Maieron 2007
Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.
75 - B. Baibussinov 2007
The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintilla tors (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, cloning the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا